【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點(diǎn)F,使EF=AE,連接AF,CF,連接BE并延長交CF于點(diǎn)G.下列結(jié)論: ①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 . (填寫所有正確結(jié)論的序號(hào))
【答案】①②③④
【解析】解:①正確.∵△ABC是等邊三角形, ∴AB=AC=BC,∠BAC=∠ACB=60°,
∵DE=DC,
∴△DEC是等邊三角形,
∴ED=EC=DC,∠DEC=∠AEF=60°,
∵EF=AE,
∴△AEF是等邊三角形,
∴AF=AE,∠EAF=60°,
在△ABE和△ACF中,
,
∴△ABE≌△ACF,故①正確.
②正確.∵∠ABC=∠FDC,
∴AB∥DF,
∵∠EAF=∠ACB=60°,
∴AB∥AF,
∴四邊形ABDF是平行四邊形,
∴DF=AB=BC,故②正確.
③正確.∵△ABE≌△ACF,
∴BE=CF,S△ABE=S△AFC ,
在△BCE和△FDC中,
,
∴△BCE≌△FDC,
∴S△BCE=S△FDC ,
∴S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF , 故③正確.
④正確.∵△BCE≌△FDC,
∴∠DBE=∠EFG,∵∠BED=∠FEG,
∴△BDE∽△FGE,
∴ = ,
∴ = ,
∵BD=2DC,DC=DE,
∴ =2,
∴FG=2EG.故④正確.
①正確.根據(jù)兩角夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等即可判斷.②正確.只要證明四邊形ABDF是平行四邊形即可.③正確.只要證明△BCE≌△FDC.④正確.只要證明△BDE∽△FGE,得 = ,由此即可證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=30°,M為AC上一點(diǎn),AM=2,點(diǎn)P是AB上的一動(dòng)點(diǎn),PQ⊥AC,垂足為點(diǎn)Q,則PM+PQ的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次社會(huì)調(diào)查活動(dòng)中,小華收集到某“健步走運(yùn)動(dòng)”團(tuán)隊(duì)中20名成員一天行走的步數(shù),記錄如下:
5640 6430 6520 6798 7325
8430 8215 7453 7446 6754
7638 6834 7326 6830 8648
8753 9450 9865 7290 7850
對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 3 |
E | 9500≤x<10500 | n |
請根據(jù)以上信息解答下列問題:
(1)填空:m= , n=;
(2)補(bǔ)全頻數(shù)發(fā)布直方圖;
(3)這20名“健步走運(yùn)動(dòng)”團(tuán)隊(duì)成員一天行走步數(shù)的中位數(shù)落在組;
(4)若該團(tuán)隊(duì)共有120人,請估計(jì)其中一天行走步數(shù)不少于7500步的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2+bx的圖象如圖,對(duì)稱軸為直線x=1,若關(guān)于x的一元二次方程x2+bx﹣t=0(t為實(shí)數(shù))在﹣1<x<4的范圍內(nèi)有解,則t的取值范圍是( )
A.t≥﹣1
B.﹣1≤t<3
C.﹣1≤t<8
D.3<t<8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),ABCD的頂點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)D的坐標(biāo)為(0,2 ),點(diǎn)B在x軸的正半軸上,點(diǎn)E為線段AD的中點(diǎn),過點(diǎn)E的直線l與x軸交于點(diǎn)F,與射線DC交于點(diǎn)G.
(1)求∠DCB的度數(shù);
(2)當(dāng)點(diǎn)F的坐標(biāo)為(﹣4,0)時(shí),求點(diǎn)G的坐標(biāo);
(3)連接OE,以O(shè)E所在直線為對(duì)稱軸,△OEF經(jīng)軸對(duì)稱變換后得到△OEF',記直線EF'與射線DC的交點(diǎn)為H.
如圖2,當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求證:△DEG∽△DHE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求進(jìn)行計(jì)算:
(1)計(jì)算:|﹣ |﹣ +2sin60°+( )﹣1+(2﹣ )0
(2)先化簡,再求值: ÷(1﹣ ),其中a= ﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)大學(xué)生創(chuàng)業(yè),政府制定了小型企業(yè)的優(yōu)惠政策,許多小型企業(yè)應(yīng)運(yùn)而生.某市統(tǒng)計(jì)了該市2015年1﹣5月新注冊小型企業(yè)的數(shù)量,并將結(jié)果繪制成如圖兩種不完整的統(tǒng)計(jì)圖:
(1)某市2015年1﹣5月份新注冊小型企業(yè)一共家,請將折線統(tǒng)計(jì)圖補(bǔ)充完整.
(2)該市2015年3月新注冊小型企業(yè)中,只有2家是養(yǎng)殖企業(yè),現(xiàn)從3月新注冊的小型企業(yè)中隨機(jī)抽取2家企業(yè)了解其經(jīng)營情況.請以列表或畫樹狀圖的方法求出所抽取的2家企業(yè)恰好都是養(yǎng)殖企業(yè)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)D是等腰直角三角形ABC斜邊BC所在直線上一點(diǎn)(不與點(diǎn)B重合),連接AD.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BD⊥CE.
(2)如圖2,當(dāng)點(diǎn)D在線段BC延長線上時(shí),探究AD、BD、CD三條線段之間的數(shù)量關(guān)系,寫出結(jié)論并說明理由;(3)若BD=CD,直接寫出∠BAD的度數(shù).
(3)若BD=CD,直接寫出∠BAD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com