【題目】小明將兩個(gè)直角三角形紙片如圖(1)那樣拼放在同一平面上,抽象出如圖(2)的平面圖形,與恰好為對(duì)頂角,,連接,,點(diǎn)F是線段上一點(diǎn).
探究發(fā)現(xiàn):
(1)當(dāng)點(diǎn)F為線段的中點(diǎn)時(shí),連接(如圖(2),小明經(jīng)過探究,得到結(jié)論:.你認(rèn)為此結(jié)論是否成立?_________.(填“是”或“否”)
拓展延伸:
(2)將(1)中的條件與結(jié)論互換,即:若,則點(diǎn)F為線段的中點(diǎn).請(qǐng)判斷此結(jié)論是否成立.若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.
問題解決:
(3)若,求的長(zhǎng).
【答案】(1)是;(2)結(jié)論成立,理由見解析;(3)
【解析】
(1)利用等角的余角相等求出∠A=∠E,再通過AB=BD求出∠A=∠ADB,緊接著根據(jù)直角三角形斜邊的中線等于斜邊的一半求出FD=FE=FC,由此得出∠E=∠FDE,據(jù)此進(jìn)一步得出∠ADB=∠FDE,最終通過證明∠ADB+∠EDC=90°證明結(jié)論成立即可;
(2)根據(jù)垂直的性質(zhì)可以得出90°,90°,從而可得,接著證明出,利用可知,從而推出,最后通過證明得出,據(jù)此加以分析即可證明結(jié)論;
(3)如圖,設(shè)G為的中點(diǎn),連接GD,由(1)得,故而,在中,利用勾股定理求出,由此得出,緊接著,繼續(xù)通過勾股定理求出,最后進(jìn)一步證明,再根據(jù)相似三角形性質(zhì)得出,從而求出,最后進(jìn)一步分析求解即可.
(1)∵∠ABC=∠CDE=90°,
∴∠A+∠ACB=∠E+∠ECD,
∵∠ACB=∠ECD,
∴∠A=∠E,
∵AB=BD,
∴∠A=∠ADB,
在中,
∵F是斜邊CE的中點(diǎn),
∴FD=FE=FC,
∴∠E=∠FDE,
∵∠A=∠E,
∴∠ADB=∠FDE,
∵∠FDE+∠FDC=90°,
∴∠ADB+∠FDC=90°,
即∠FDB=90°,
∴BD⊥DF,結(jié)論成立,
故答案為:是;
(2)結(jié)論成立,理由如下:
∵,
∴90°,90°,
∴,
∵,
∴.
∴.
又∵,
∴.
∴.
又90°,90°,,
∴,
∴.
∴.
∴F為的中點(diǎn);
(3)如圖,設(shè)G為的中點(diǎn),連接GD,由(1)可知,
∴,
又∵,
在中,,
∴,
在中,,
在與中,
∵∠ABC=∠EDC,∠ACB=∠ECD,
∴,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】賀歲片《流浪地球》被稱為開啟了中國(guó)科幻片的大門,2019也被稱為中國(guó)科幻片的元年.某電影院為了全面了解觀眾對(duì)《流浪地球》的滿意度情況,進(jìn)行隨機(jī)抽樣調(diào)查,分為四個(gè)類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的觀眾共有 人;
(2)扇形統(tǒng)計(jì)圖中,扇形C的圓心角度數(shù)是 .
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)春節(jié)期間,該電影院來觀看《流浪地球》的觀眾約3000人,請(qǐng)估計(jì)觀眾中對(duì)該電影滿意(A、B、C類視為滿意)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),∠OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過點(diǎn)B的反比例函數(shù)解析式為( )
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,分別在邊,上,,相交于點(diǎn),若,,則的值是_________;若,,則的值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(是常數(shù),)的與的部分對(duì)應(yīng)值如下表:
0 | 2 | ||||
6 | 0 | 6 |
下列結(jié)論:
①;
②當(dāng)時(shí),函數(shù)最小值為;
③若點(diǎn),點(diǎn)在二次函數(shù)圖象上,則;
④方程有兩個(gè)不相等的實(shí)數(shù)根.
其中,正確結(jié)論的序號(hào)是__________________.(把所有正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,為的平分線.
(1)如圖①,若矩形是正方形,,求的長(zhǎng);
(2)如圖②,若,,求的長(zhǎng);
(3)如圖②,若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,是的中點(diǎn),是的中點(diǎn),過點(diǎn)作交的延長(zhǎng)線于點(diǎn).
(1)求證:;
(2)證明:四邊形是菱形;
(3)若,,直接寫出菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD為矩形,曲線L經(jīng)過點(diǎn)D.點(diǎn)Q是四邊形ABCD內(nèi)一定點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),作PM⊥AB交曲線L于點(diǎn)M,連接QM.
小東同學(xué)發(fā)現(xiàn):在點(diǎn)P由A運(yùn)動(dòng)到B的過程中,對(duì)于x1=AP的每一個(gè)確定的值,θ=∠QMP都有唯一確定的值與其對(duì)應(yīng),x1與θ的對(duì)應(yīng)關(guān)系如表所示:
x1=AP | 0 | 1 | 2 | 3 | 4 | 5 |
θ=∠QMP | α | 85° | 130° | 180° | 145° | 130° |
小蕓同學(xué)在讀書時(shí),發(fā)現(xiàn)了另外一個(gè)函數(shù):對(duì)于自變量x2在﹣2≤x2≤2范圍內(nèi)的每一個(gè)值,都有唯一確定的角度θ與之對(duì)應(yīng),x2與θ的對(duì)應(yīng)關(guān)系如圖2所示:
根據(jù)以上材料,回答問題:
(1)表格中α的值為 .
(2)如果令表格中x1所對(duì)應(yīng)的θ的值與圖2中x2所對(duì)應(yīng)的θ的值相等,可以在兩個(gè)變量x1與x2之間建立函數(shù)關(guān)系.
①在這個(gè)函數(shù)關(guān)系中,自變量是 ,因變量是 ;(分別填入x1和x2)
②請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,并畫出這個(gè)函數(shù)的圖象;
③根據(jù)畫出的函數(shù)圖象,當(dāng)AP=3.5時(shí),x2的值約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).
(1)求反比例函數(shù)的關(guān)系式;
(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且△ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com