【題目】閱讀下列文字:我們知道對(duì)于一個(gè)圖形,通過不同的方法計(jì)算圖形的面積,可以得到一個(gè)數(shù)學(xué)等式,例如由圖1可以得到(a+2b)(a+b)= a2+3ab+2b2.請(qǐng)解答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式 ;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=9,ab+bc+ac=29,求a 2+b2+c2的值;
(3)小明同學(xué)打算用x張邊長(zhǎng)為a和y張邊長(zhǎng)為b的小正方形,z張相鄰兩邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片拼出了一個(gè)面積為(3a+5b)(4a+7b)的長(zhǎng)方形,那么他總共需要多少?gòu)埣埰?/span>
【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)23;(3)88張.
【解析】
(1)直接求得正方形的面積,然后再根據(jù)正方形的面積=各矩形的面積之和求解即可;
(2)將a+b+c=9,ab+bc+ac=29代入(1)中得到的關(guān)系式,然后進(jìn)行計(jì)算即可;
(3)將(3a+5b)(4a+7b)展開后即可得出答案.
解:(1)正方形的面積可表示為=(a+b+c)2;
正方形的面積=各個(gè)矩形的面積之和=a2+b2+c2+2ab+2bc+2ac,
故答案為:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
(2)∵a+b+c=12,ab+bc+ac=29,
∴由(1)可知:a2+b2+c2=(a+b+c)22(ab+bc+ca)=81-29×2=23,
(3)∵==
∴需要邊長(zhǎng)為a的小正方形12張,變成為b的小正方形35張,鄰邊為a、b的長(zhǎng)方形41張,總共需要12+35+41=88張.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號(hào)”高鐵A與“復(fù)興號(hào)”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時(shí)間比B車的行駛時(shí)間多40%,兩車的行駛時(shí)間分別為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知將邊長(zhǎng)分別為a和2b(a>b)的長(zhǎng)方形分割成四個(gè)全等的直角三角形,如圖1,再用這四個(gè)三角形拼成如圖2所示的正方形,中間形成一個(gè)正方形的空洞.經(jīng)測(cè)量得長(zhǎng)方形的面積為24,正方形的邊長(zhǎng)為5.試通過你獲取的信息,求a2+b2和a2﹣b2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延長(zhǎng)線與AD的延長(zhǎng)線交于點(diǎn)E.
(1)若∠A=60°,求BC的長(zhǎng);
(2)若sinA=,求AD的長(zhǎng).
(注意:本題中的計(jì)算過程和結(jié)果均保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列問題:
(1)若 n(n≠0)是關(guān)于 的方程 x+mx-2n=0的根,求 m+n的值;
(2)已知 , 為實(shí)數(shù),且 y=2,求 2x-3y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長(zhǎng)線于點(diǎn)F.
(1)求∠F的大。
(2)若CD=3,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、c是Rt△ABC和Rt△BED邊長(zhǎng),易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請(qǐng)解決下列問題:
寫出一個(gè)“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長(zhǎng)是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,AB=4,點(diǎn)E,F在對(duì)角線BD上,AE∥CF.
(1)求證:△ABE≌△CDF;
(2)若∠ABE=2∠BAE,求DF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com