【題目】如圖,四邊形中,,,.
(1)求證:;
(2)若,,,分別是,,,的中點(diǎn),求證:線段與線段互相平分.
【答案】(1)見解析;(2)見解析
【解析】
(1)過點(diǎn)D作DM∥AC交BC的延長線于點(diǎn)M,由平行四邊形的性質(zhì)易得AC=DM=DB,∠DBC=∠M=∠ACB,由全等三角形判定定理及性質(zhì)得出結(jié)論;
(2)連接EH,FH,FG,EG,E,F,G,H分別是AD,BC,DB,AC的中點(diǎn),易得四邊形HFGE為平行四邊形,由平行四邊形的性質(zhì)及(1)結(jié)論得□HFGE為菱形,易得EF與GH互相垂直平分.
解:(1)證明:(1)過點(diǎn)D作DM∥AC交BC的延長線于點(diǎn)M,如圖1,
∵AD∥CB,
∴四邊形ADMC為平行四邊形,
∴AC=DM=DB,∠DBC=∠M=∠ACB,
在△ACB和△DBC中,
,
∴△ACB≌△DBC(SAS),
∴AB=DC;
(2)連接EH,FH,FG,EG,如圖2,
∵E,F,G,H分別是AD,BC,DB,AC的中點(diǎn),
∴GE∥AB,且GE=AB,HF∥AB,且HF=AB,
∴GE∥HF,GE=HF,
∴四邊形HFGE為平行四邊形,
由(1)知,AB=DC,
∴GE=HE,
∴□HFGE為菱形,
∴EF與GH互相垂直平分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點(diǎn)A1 , 作正方形A1B1C1B2 , 延長C1B2交直線l于點(diǎn)A2 , 作正方形A2B2C2B3 , 延長C2B3交直線l于點(diǎn)A3 , 作正方形A3B3C3B4 , …,依此規(guī)律,則A2016A2017= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點(diǎn)B,C,E共線,點(diǎn)C,D,G共線,連接AF,取AF的中點(diǎn)H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人到一家快遞公司辦理環(huán)江香米(簡稱香米)的快遞托運(yùn),重量為千克.快遞公司收取托運(yùn)費(fèi)方案如下:
凡物品重量不超過10千克的,按2元/千克收取托運(yùn)費(fèi);當(dāng)物品重量超過10千克的,超出部分按3元/千克加收托運(yùn)費(fèi).
(1)寫出千克香米的托運(yùn)費(fèi)的表達(dá)式 (用含字母的式子表示);
(2)若托運(yùn)香米重量為千克時,求出這筆托運(yùn)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察圖中給出的信息,回答下列問題:
(1)一本筆記本與一支中性筆分別是多少元?
(2)某學(xué)校給參加體育比賽獲一等獎的10名學(xué)生發(fā)筆記本,給獲二等獎的20名學(xué)生發(fā)中性筆,現(xiàn)有兩個超市在搞促銷活動,A超市規(guī)定:這兩種商品都打八折;B超市規(guī)定:每買一個筆記本送一支中性筆,另外購買的中性筆按原價賣.該學(xué)校選擇哪家超市購買更合算,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教育部明確要求中小學(xué)生每天要有2小時體育鍛煉,周末朱諾和哥哥在米的環(huán)形跑道上騎車鍛煉,他們在同一地點(diǎn)沿著同一方向同時出發(fā),騎行結(jié)束后兩人有如下對話:
朱諾:你要分鐘才能第一次追上我.
哥哥:我騎完一圈的時候,你才騎了半圈!
(1)請根據(jù)他們的對話內(nèi)容,求出朱諾和哥哥的騎行速度(速度單位:米/秒);
(2)哥哥第一次追上朱諾后,在第二次相遇前,再經(jīng)過多少秒,朱諾和哥哥相距米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:
如圖,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求證:AB∥CD.
證明:∵BE平分∠ABD(已知),∴∠ABD=2∠α( )
∵DE平分∠BDC( )
∴∠BDC= ( ),∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代換)
∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=( ),∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BO在x軸的負(fù)半軸上,頂點(diǎn)C的坐標(biāo)為(﹣3,3 ),反比例函數(shù)y= 的圖象與菱形對角線AO交于D點(diǎn),連接BD,當(dāng)BD⊥x軸時,k的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(x2+3mx﹣)(x2﹣3x+n)的積中不含x和x3項(xiàng),
(1)求m2﹣mn+n2的值;
(2)求代數(shù)式(﹣18m2n)2+(9mn)﹣2+(3m)2014n2016的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com