【題目】已知反比例函數(shù)y= 和一次函數(shù)y=﹣x+a﹣2(a為常數(shù))
(1)當a=0時,求反比例函數(shù)與一次函數(shù)的交點坐標.
(2)當反比例函數(shù)與一次函數(shù)有兩個交點時,請確定a的范圍.

【答案】
(1)解:當a=0時,一次函數(shù)y=﹣x+a﹣2的解析式是y=﹣x﹣2,

聯(lián)立反比例函數(shù)解析式、一次函數(shù)解析式,得 ,

解得

故當a=0時,反比例函數(shù)與一次函數(shù)的交點坐標是(﹣1,﹣1)


(2)解:存在實數(shù)a,使反比例函數(shù)與一次函數(shù)有兩個交點,

聯(lián)立反比例函數(shù)解析式、一次函數(shù)解析式,得

由方程組有2組解,得

x2﹣(a﹣2)x+1=0有兩個不相等的實數(shù)根.

△=[﹣(a﹣2)]2﹣4>0,

解得a<0或a>4.

故a的范圍是a<0或a>4


【解析】(1)根據(jù)a的值,可得一次函數(shù)的解析式,聯(lián)立反比例函數(shù)與一次函數(shù)的解析式,可得方程組,解方程組,可得交點坐標;(2)聯(lián)立反比例函數(shù)與一次函數(shù)的解析式,可得方程組,根據(jù)反比例函數(shù)與一次函數(shù)有兩個交點,可得方程組有2組解,根據(jù)一元二次方程的判別式,可得答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.

(1)求證:四邊形AODE是矩形;

(2)若AB=2,AC=2,求四邊形AODE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.

(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?

(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,直線MN是等邊△ABC底邊BC的中垂線,點P在直線MN上,且使△PAB、△PAC、△PBC都是等腰三角形,滿足上述條件的點P的個數(shù)有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠DAB=60°,E為BC的中點,在對角線AC上存在一點P,使△PBE的周長最小,則△PBE的周長的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC與△A′B′C′的頂點都在格點上.

(1)求證:△ABC∽A′B′C′;
(2)A′B′C′與△ABC是位似圖形嗎?如果是,在圖形上畫出位似中心并求出位似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市中考體育測試有“跳繩”項目,為加強訓練,某班女生分成甲、乙兩組參加班級跳繩對抗賽,兩組參賽人數(shù)相等,比賽結束后,依據(jù)兩組學生的成績(滿分為10分)繪制了如下統(tǒng)計圖表:
甲組學生成績統(tǒng)計表

分 數(shù)

人 數(shù)

5分

5人

6分

2人

7分

3人

8分

1人

9分

4人


(1)經(jīng)計算,乙組的平均成績?yōu)?分,中位數(shù)是6分,請求出甲組學生的平均成績、中位數(shù),并從平均數(shù)的角度分析哪個組的成績較好?
(2)經(jīng)計算,甲組的成績的方差是2.56,乙組的方差是多少?比較可得哪個組的成績較為整齊?
(3)學校組織跳繩比賽,班主任決定從這次對抗賽中得分為9分的學生中抽簽選取5個人組成代表隊參賽,則在對抗賽中得分為9分的學生參加比賽的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BDABC的角平分線,DEAB,DFBC垂足分別為E、F

1)求證:BE=BF;

2)若ABC的面積為70,AB=16,DE=5,則BC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1:y=﹣x+b與直線l2:y=kx+1相交于點A(1,3).

(1)求直線l1、l2的函數(shù)表達式;

(2)求直線l1、l2x軸圍成的三角形ABC的面積;

(3)求直線l1、l2與坐標軸圍成的四邊形ABOD的面積.

查看答案和解析>>

同步練習冊答案