【題目】在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧 沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD.
(1)如圖1,若點(diǎn)D與圓心O重合,AC=2,求⊙O的半徑r;
(2)如圖2,若點(diǎn)D與圓心O不重合,∠BAC=25°,請(qǐng)直接寫出∠DCA的度數(shù).

【答案】
(1)解:如圖,過點(diǎn)O作OE⊥AC于E,

則AE= AC= ×2=1,

∵翻折后點(diǎn)D與圓心O重合,

∴OE= r,

在Rt△AOE中,AO2=AE2+OE2

即r2=12+( r)2,

解得r=


(2)解:連接BC,

∵AB是直徑,

∴∠ACB=90°,

∵∠BAC=25°,

∴∠B=90°﹣∠BAC=90°﹣25°=65°,

根據(jù)翻折的性質(zhì), 所對(duì)的圓周角為∠B, 所對(duì)的圓周角為∠ADC,

∴∠ADC+∠B=180°,

∴∠B=∠CDB=65°,

∴∠DCA=∠CDB﹣∠A=65°﹣25°=40°.


【解析】(1)過點(diǎn)O作OE⊥AC于E,根據(jù)垂徑定理可得AE= AC,再根據(jù)翻折的性質(zhì)可得OE= r,然后在Rt△AOE中,利用勾股定理列式計(jì)算即可得解;(2)連接BC,根據(jù)直徑所對(duì)的圓周角是直角求出∠ACB,根據(jù)直角三角形兩銳角互余求出∠B,再根據(jù)翻折的性質(zhì)得到 所對(duì)的圓周角,然后根據(jù)∠ACD等于 所對(duì)的圓周角減去 所對(duì)的圓周角,計(jì)算即可得解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解含30度角的直角三角形的相關(guān)知識(shí),掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半,以及對(duì)垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,E、F是四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AF=CE,DF=BEDFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC的平分線,EDBC,FEDBDE.請(qǐng)說明EF平分AED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體考在即,初三(1)班的課題研究小組對(duì)本年級(jí)530名學(xué)生的體育達(dá)標(biāo)情況進(jìn)行調(diào)查,制作出如圖所示的統(tǒng)計(jì)圖,其中1班有50人.(注:30分以上為達(dá)標(biāo),滿分50分)根據(jù)統(tǒng)計(jì)圖,解答下面問題:
(1)初三(1)班學(xué)生體育達(dá)標(biāo)率和本年級(jí)其余各班學(xué)生體育達(dá)標(biāo)率各是多少?
(2)若除初三(1)班外其余班級(jí)學(xué)生體育考試成績(jī)?cè)?0﹣﹣40分的有120人,請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖;(注:請(qǐng)?jiān)趫D中分?jǐn)?shù)段所對(duì)應(yīng)的圓心角的度數(shù))
(3)如果要求全年級(jí)學(xué)生的體育達(dá)標(biāo)率不低于90%,試問在本次調(diào)查中,該年級(jí)全體學(xué)生的體育達(dá)標(biāo)率是否符合要求?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)叫作整點(diǎn),函數(shù)y=的圖象上的整點(diǎn)的個(gè)數(shù)是( 。

A. 3個(gè) B. 4個(gè) C. 6個(gè) D. 8個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于實(shí)數(shù)a、b,定義一種運(yùn)算“”為:ab=a2+ab﹣2,有下列命題: ①13=2;
②方程x1=0的根為:x1=﹣2,x2=1;
③不等式組 的解集為:﹣1<x<4;
④點(diǎn)( , )在函數(shù)y=x(﹣1)的圖象上.
其中正確的是(
A.①②③④
B.①③
C.①②③
D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求∠BOD的度數(shù);(2)OE是否平分∠BOC?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):

(1)①若∠DCE=45°,則∠ACB的度數(shù)為  ;

②若∠ACB=140°,求∠DCE的度數(shù);

(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.

(3)當(dāng)∠ACE<180°且點(diǎn)E在直線AC的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請(qǐng)直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案