【題目】某糧庫需要把晾曬場上的1200t玉米入庫封存.
(Ⅰ)入庫所需要的時間d(單位:天)與入庫平均速度v(單位:t/天)的函數(shù)解析式為_____.
(Ⅱ)已知糧庫有職工60名,每天最多可入庫300t玉米,預(yù)計玉米入庫最快可在_____天內(nèi)完成.
(Ⅲ)糧庫職工連續(xù)工作兩天后,天氣預(yù)報說未來幾天會下雨,糧庫決定次日把剩下的玉米全部入庫,至少需要增加_____名職工.
【答案】(Ⅰ) (Ⅱ)4 (Ⅲ)60
【解析】
(1)根據(jù)題意可知入庫所需時間t(天)=1200t玉米÷入庫速度y(噸/天)解答即可;
(2)直接把y=300代入解析式求解即可;
(3)根據(jù)題意求出剩余的600噸玉米一天內(nèi)全部入庫需職工人數(shù)為120(名),所以需增加的人數(shù)即可求出.
(1)入庫所需時間t(天)與入庫速度y(噸/天)的函數(shù)關(guān)系式為d=;
(2)當(dāng)y=300時,則有d=.所以預(yù)計玉米入庫最快可在4日內(nèi)完成;
(3)糧庫的職工連續(xù)工作了兩天后,還沒有入庫的玉米有:1200﹣300×2=600(噸)每名職工每天可使玉米入庫的數(shù)量為:300÷60=5(噸),
將剩余的600噸玉米一天內(nèi)全部入庫需職工人數(shù)為:600÷5=120(名).
所以需增加的人數(shù)為:120﹣60=60(名).
故答案為:d=;4;60.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,點P在BC上.若點P為BC的中點,則m=AP2+BPPC的值為多少?若BC邊上有100個不同的點P1,P2,…,P100,且mi=APi2+BPiPiC(i=1,2,…,100),則m=m1+m2+…+m100 的值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人在玩轉(zhuǎn)盤游戲時,把轉(zhuǎn)盤A、B分別分成4等份、3等份,并在每一份內(nèi)標(biāo)上數(shù)字,如圖所示.游戲規(guī)定:轉(zhuǎn)動兩個轉(zhuǎn)盤停止后,指針必須指到某一數(shù)字,否則重轉(zhuǎn).
(1)請用樹狀圖或列表法列出所有可能的結(jié)果;
(2)若指針?biāo)傅膬蓚數(shù)字都是方程x2-5x+6=0的解時,則甲獲勝;若指針?biāo)傅膬蓚數(shù)字都不是方程x2-5x+6=0的解時,則乙獲勝,問他們兩人誰獲勝的概率大?請分析說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)若只沿y軸上下平移該拋物線后與y軸的交點為A1,頂點為M1,且四邊形AMM1A1是菱形,寫出平移后拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC為⊙O的直徑,點A是弧BC的中點,連接BA并延長至點D,使得AD=AB,連接CD,點E為CD上一點,連接BE交弧BC于點F,連接AF.
(1)求證:CD為⊙O的切線;
(2)求證:∠DAF=∠BEC;
(3)若DE=2CE=4,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),在方格紙中如何通過平移或旋轉(zhuǎn)這兩種變換,由圖形得到圖形,再由圖形得到圖形?
(2)如圖(1),如果點、點的坐標(biāo)分別為,,寫出點的坐標(biāo);
(3)如圖(2)所示是某設(shè)計師設(shè)計的圖案的一部分,請你運用旋轉(zhuǎn)變換的方法,在方格紙中將圖形繞點順時針依次旋轉(zhuǎn)、、,依次畫出旋轉(zhuǎn)后得到的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標(biāo);
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當(dāng)矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:①c>0;②若B(﹣,y1),C(﹣,y2)為圖象上的兩點,則y1<y2;③2a﹣b=0;④<0,其中正確的結(jié)論是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com