如圖,E是正方形ABCD的邊AB上的動(dòng)點(diǎn), EF⊥DE交BC于點(diǎn)F.若正方形的邊長(zhǎng)為4, AE=,BF=.則 與的函數(shù)關(guān)系式為 .
【解析】
試題分析:根據(jù)正方形的性質(zhì)可得∠DAE=∠EBF=90°,AD=AB,由EF⊥DE可得∠ADE=∠FEB,即可證得△ADE∽△BEF,根據(jù)相似三角形的性質(zhì)求解即可.
∵ABCD是正方形,
∴∠DAE=∠EBF=90°,AD=AB,
∴∠ADE+∠DEA=90°,
∵EF⊥DE,
∴∠AED+∠FEB=90°,
∴∠ADE=∠FEB,
∴△ADE∽△BEF
∴.
∵AD=AB=4,
∴BE=4-x,
∴,解得.
考點(diǎn):正方形的性質(zhì),直角三角形的性質(zhì),相似三角形的判定與性質(zhì)
點(diǎn)評(píng):相似三角形的判定與性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考常見(jiàn)題,一般難度不大,需熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||
B、
| ||
C、a | ||
D、2a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com