【題目】某中學(xué)舉行“中國夢·校園好聲音”歌手大賽,高、初中根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽,兩個隊各選出的5名選手的決賽成績(滿分100)如下圖所示:
根據(jù)圖示信息,整理分析數(shù)據(jù)如下表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(說明:圖中虛線部分的間隔距離均相等)
(1)求出表格中的值;
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;
(3)計算兩隊決賽成績的方差,并判斷哪一個代表隊選手成績較為穩(wěn)定.
【答案】(1)a=85,b=80,c=85;(2)初中部成績較好;(3)初中代表隊的方差為70,高中代表隊的方差為160,初中代表隊選手成績較為穩(wěn)定
【解析】
(1)直接利用中位數(shù)、平均數(shù)、眾數(shù)的定義分別分析求出答案;
(2)利用平均數(shù)以及中位數(shù)的定義分析得出答案;
(3)利用方差的定義得出答案.
解:(1)填表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | 85 | 85 |
高中部 | 85 | 80 | 100 |
(2)初中部成績較好,因為兩個隊的平均數(shù)都相同,初中部的中位數(shù)高,所以在平均數(shù)相同的情況下中位數(shù)高的初中部成績較好.
(3)∵,
,
∴s12<s22,因此初中代表隊選手成績較為穩(wěn)定.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有A、B兩個餐廳,甲、乙兩名學(xué)生各自隨機選擇其中一個餐廳用餐,請用列表或畫樹狀圖的方法解答:
(1)甲、乙兩名學(xué)生在同一餐廳用餐的概率;
(2)甲、乙兩名學(xué)生至少有一人在B餐廳的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中.
(1)若把△ABC向上平移2個單位,再向左平移1個單位得到△A1B1C1,畫出△A1B1C1,并寫出點A1,B1,C1的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F為AB中點,連接DF、EF、DE、EF與AC交于點O,DE與交于點G,連接OG,若,下列結(jié)論:①;②;③EF⊥AC;④.其中正確的結(jié)論的序號是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生主題閱讀的情況,隨機抽查了部分學(xué)生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計圖表.
某校抽查的學(xué)生文章閱讀的篇數(shù)統(tǒng)計表
文章閱讀的篇數(shù)(篇) | 3 | 4 | 5 | 6 | 7 及以上 |
人數(shù)(人) | 10 | 14 | m | 8 | 6 |
請根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)求被抽查的學(xué)生人數(shù)和 m 的值;
(2) 求本次抽查的學(xué)生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);
(3)若該校共有 1200 名學(xué)生,根據(jù)抽查結(jié)果,估計該校學(xué)生在這一周內(nèi)文章閱讀的篇數(shù)為 4 篇的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并解答問題:
明朝數(shù)學(xué)家程大位在其數(shù)學(xué)著作《直指算法統(tǒng)宗》中以《西江月》詞牌敘述了一道“蕩秋千”問題:原文:平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾?譯文:如圖,有一架秋千,當(dāng)它靜止時,踏板離地尺,將它往前推送尺(水平距離)時,秋千的踏板就和人一樣高,這個人的身高為尺,秋千的繩索始終拉得很直,試問繩索有多長?(注:古代尺為步)
建立數(shù)學(xué)模型:如圖,秋千繩索靜止的時候,踏板離地高尺(尺),將它往前推進(jìn)兩步(尺),此時踏板升高離地尺(尺).已知于點于點于點,點在上,,求秋千繩索(或)的長度.請解答下列問題:
(1)直接寫出四邊形是哪種特殊的四邊形;
(2)求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點C(0,6)的直線AC與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運動,試解決下列問題:
(1)求直線AC的解析式;
(2)求△OAC的面積;
(3)是否存在點M、使△OMC的面積是△OAC的面積的?若存在,求出此時點M的坐標(biāo);若不存在,請說明理由?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com