【題目】如圖,正方形的邊長為,點在邊上,連接,過點作,與的延長線相交于點,連接,與邊相交于點,與對角線相交于點.若,則的長為( )
A.B.C.D.
【答案】C
【解析】
在正方形ABCD中,由FD與DE垂直,利用等式的性質得到一對角相等,再由一對直角相等,且AD=DC,利用AAS得到三角形DAE與三角形DCF全等,利用全等三角形對應邊相等得到AE=CF,進而求出BE的長
∵在正方形ABCD中,∠BCD=90°,BC=CD=6,
∴BD=6.
∵DF⊥DE,
∴∠ADE+∠EDC=90°,∠EDC+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(ASA),
∴AE=CF.
又∵BD=BF=6,
∴AE=CF=BF-BC=6-6,
∴BE=AB-AE=6-(6-6)=12-6,
即BE的長為12-6;
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx+b經過點A(0,2),B(﹣4,0)和拋物線y=x2.
(1)求直線的解析式;
(2)將拋物線y=x2沿著x軸向右平移,平移后的拋物線對稱軸左側部分與y軸交于點C,對稱軸右側部分拋物線與直線y=kx+b交于點D,連接CD,當CD∥x軸時,求平移后得到的拋物線的解析式;
(3)在(2)的條件下,平移后得到的拋物線的對稱軸與x軸交于點E,P為該拋物線上一動點,過點P作拋物線對稱軸的垂線,垂足為Q,是否存在這樣的點P,使以點E,P,Q為頂點的三角形與△AOB相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,G為CD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BD交AG于F點.已知FG=2,則線段AE的長度為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)數(shù)學理解:如圖①,是等腰直角三角形,過斜邊的中點作正方形,分別交,于點,,求證:;
(2)問題解決:如圖②,在任意直角內,找一點,過點作正方形,分別交,于點,,若,求的度數(shù);
(3)聯(lián)系拓廣;如圖③,在(2)的條件下,分別延長,,交于點,,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對交通法則的了解情況在全校隨機調查了部分學生,調查結果分為四種:.非常了解,.比較了解,.基本了解,.不太了解,并將此次調查結果整理繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)本次共調查_______名學生;扇形統(tǒng)計圖中所對應扇形的圓心角度數(shù)是_______;
(2)補全條形統(tǒng)計圖;
(3)學校準備從甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知甲、乙兩地相距車和車分別從甲地和乙地同時出發(fā),相向而行,沿同一 條公路駛往乙地和甲地后,車因臨時需要,返回到這條公路上的丙地取物,然后又立即趕往乙地,結果比車晚到達目的地.兩車的速度始終保持不變,如圖是兩車距各自出 發(fā)地的路程(單位:),(單位:)與 車出發(fā)時間(單位:)的函數(shù)圖象,請結合圖象信息解答下列問題:
(1)A車的速度為 車的速度為
(2)求甲、丙兩地的距離;
(3)求車出發(fā)多長時間,兩車相距
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=﹣x+m的圖象與反比例函數(shù)的圖象交于A、B兩(點A在點B的左側),點P為x軸上一動點,當有且只有一個點P,使得∠APB=90°,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=10,E、F分別在邊BC,AD上,BE=DF.將△ABE,△CDF分別沿著AE,CF翻折后得到△AGE,△CHF.若AG、CH分別平分∠EAD、∠FCB,則GH長為( )
A.3B.4C.5D.7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,,點為邊上的動點(點不與點,重合).以為頂點作,射線交邊于點,過點作交射線于點,連接.
(1)求證:;
(2)當時(如圖2),求的長;
(3)點在邊上運動的過程中,是否存在某個位置,使得?若存在,求出此時的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com