【題目】如圖,在矩形ABCD中,AB=6,AD=8,以BC為斜邊在矩形所在平面作直角三角形BEC,FCD的中點,則EF的最小值為

A. B. 4C. D. 1

【答案】D

【解析】

由圓周角定理可知點E在以BC為直徑的⊙O上,所以當(dāng)O,E’F三點共線時,E’F取最小值,然后求出OF,OE’即可解決問題.

解:由題意可知:∠BEC=90°,

∴點E在以BC為直徑的⊙O上,連結(jié)OF,如圖,則當(dāng)OE’,F三點共線時,E’F取最小值,

∵四邊形ABCD是矩形,

BC=AD=8,CD=AB=6

BC為直徑,FCD的中點,

OC=4,CF=3OE’=4,

OF=

E’F=OF- OE’=5-4=1,即EF的最小值為1

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在反比例函數(shù)圖象上運動,以線段OA為直徑的圓交該雙曲線于點C,交y軸于點B,若弧CB=CO,則點A的坐標為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過點A(1,0),

B(3,2)

(1)求m的值和拋物線的解析式;

(2)求不等式x2+bx+c>x+m的解集(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將二次函數(shù)yx25x6x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象,若直線y2x+b與這個新圖象有3個公共點,則b的值為( 。

A. 或﹣12B. 2C. 122D. 或﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過A(﹣3,0),B1,0),C0,3)三點.

1)求拋物線的函數(shù)表達式;

2)如圖1,P為拋物線上在第二象限內(nèi)的一點,若△PAC面積為3,求點P的坐標;

3)如圖2,D為拋物線的頂點,在線段AD上是否存在點M,使得以M,A,O為頂點的三角形與△ABC相似?若存在,求點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABOA(-1,3)、B(-4,0.

1)畫出△ABO繞著原點O按順時針方向旋轉(zhuǎn)90°后的圖形,記為△;

2)求△ABO外接圓圓心坐標;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,∠DAF300,MCD上一點,AM的延長線交BC的延長線于點F,BE垂直平分AM,DGAF,MGDE

1)判斷四邊形DEMG的形狀,并說明理由;

2)求證:△ADM≌△FCM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一副三角板按如圖甲放置,其中∠ACB=∠DEC90°,∠A45°,∠D30°,斜邊AB6cmDC7cm.把三角板DCE繞點C順時針旋轉(zhuǎn)15°得到D1CE1(如圖乙).這時ABCD1相交于點O、與D1E1相交于點F

1)求∠OFE1的度數(shù);

2)求線段AD1的長;

3)若把DCE繞著點C順時針再旋轉(zhuǎn)30°D2CE2,這時點BD2CE2的內(nèi)部、外部、還是邊上?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

同步練習(xí)冊答案