【題目】探究:如圖①,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點(diǎn) A,BD⊥m 于點(diǎn) D,CE⊥m 于點(diǎn) E,求證:△ABD≌△CAE.
應(yīng)用:如圖②,在△ABC 中,AB=AC,D、A、E 三點(diǎn)都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.
【答案】證明見解析
【解析】
(1)根據(jù)BD⊥直線m,CE⊥直線m得∠BDA=∠CEA=90,而∠BAC=90,根據(jù)等角的余角相等得∠CAE=∠ABD,然后根據(jù)“AAS”可判斷△ADB≌△CEA.則AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)利用∠BDA=∠BAC=α,則∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,得出∠CAE=∠ABD,進(jìn)而得出△ADB≌△CEA即可得出答案.
證明:(1)∵BD⊥直線m,CE⊥直線m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS);
(2)設(shè)∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間有技術(shù)工人85人,平均每天每人可加工甲種部件16個(gè)或乙種部件10個(gè),2個(gè)甲種部件和3個(gè)乙種部件配成一套,問加工甲、乙兩種部件各安排多少人才能使每天加工的兩種部件剛好配套?并求出加工了多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘗試探究并解答:
(1)為了求代數(shù)式x2+2x+3的值,我們必須知道x的值,若x=1,則這個(gè)代數(shù)式的值為 ;若x=2,則這個(gè)代數(shù)式的值為 ,可見,這個(gè)代數(shù)式的值因x的取值不同而 (填“變化”或“不變”).盡管如此,我們還是有辦法來考慮這個(gè)代數(shù)式的值的范圍.
(2)本學(xué)期我們學(xué)習(xí)了形如a2+2ab+b2及a2﹣2ab+b2的式子,我們把這樣的多項(xiàng)式叫做“完全平方式”在運(yùn)用完全平方公式進(jìn)行因式分解時(shí),關(guān)鍵是判斷這個(gè)多項(xiàng)式是不是一個(gè)完全平方式同樣地,把一個(gè)多項(xiàng)式進(jìn)行部分因式分解可以解決代數(shù)式的最大(或最小)值問題例如:x2+2x+3=(x2+2x+1)+2=(x+1)2+2,因?yàn)?/span>(x+1)2≥0,所以(x+1)2+2≥2,所以這個(gè)代數(shù)式x2+2x+3有最小值是2,這時(shí)相應(yīng)的x的值是 .
(3)猜想:①4x2﹣12x+13的最小值是 ;
②﹣x2﹣2x+3有 值(填“最大”或“最小”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為acm,E、F分別是BC、CD的中點(diǎn),連接BF、DE,則圖中陰影部分的面積是cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一道題,原文是:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”意思是:同樣時(shí)間段內(nèi),走路快的人能走100步,走路慢的人只能走60步(兩人的步長相同).走路慢的人先走100步,走路快的人要走多少步才能追上走路慢的人(兩人走的路線相同)?試求解這個(gè)問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的例題,再解答后面的題目.
例:已知x2+y2﹣2x+4y+5=0,求x+y的值.
解:由已知得(x2﹣2x+1)+(y2+4y+4)=0,
即(x﹣1)2+(y+2)2=0.
因?yàn)椋?/span>x﹣1)2≥0,(y+2)2≥0,它們的和為0,
所以必有(x﹣1)2=0,(y+2)2=0,
所以x=1,y=﹣2.
所以x+y=﹣1.
題目:已知x2+4y2﹣6x+4y+10=0,求xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD為⊙O的直徑,弦AB交CD于點(diǎn)E,連接BD、OB.
(1)求證:△AEC∽△DEB;
(2)若CD⊥AB,AB=8,DE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中只選一類最喜愛的電視節(jié)目.以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分:
類別 | A | B | C | D | E |
節(jié)目類型 | 新聞 | 體育 | 動畫 | 娛樂 | 戲曲 |
人數(shù) | 12 | 30 | 54 | 9 |
根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生中,最喜愛體育節(jié)目的有多少人,這些學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為多少;
(2)被調(diào)查學(xué)生的總?cè)藬?shù)為多少人,統(tǒng)計(jì)表中的值為多少,統(tǒng)計(jì)圖中的值為多少;
(3)求在統(tǒng)計(jì)圖中,B類所對應(yīng)扇形圓心角的度數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com