已知如圖所示,在△ABC中,∠ACB=90°,CE⊥AB于E,D為AB上一點,且AD=AC,AF平分∠CAE交CE于F,求證:FD∥BC.

答案:略
解析:

證明:∵AF平分∠CAE

∴∠CAF=EAF,

在△ACF與△ADF中,

∴△ACF≌△ADF(SAS).∴∠ACE=ADF

又∵∠ACB=90°,CEAB

∴∠CBE+∠ECB=ACE+∠ECB=90°,

∴∠ACE=CBE,∴∠ADF=EBC,∴FDBC


提示:

要證兩線平行,可證∠EDF=B,由已知AF是平分線,得∠CAF=DAF,又AC=AD,AF為公共邊,易證△ACF≌△ADF,得∠ADF=ACF,易得∠ACF=B,問題得以解決.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,連接AC.
(1)求cos∠ACB的值;
(2)若E、F分別是AB、DC的中點,連接EF,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖所示,在平行四邊形ABCD中,∠A=60°,E、F分別是AB、CD的中點,且AB=2AD.
(1)求證:BD=
3
EF;
(2)試判斷EF與BD的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、已知如圖所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,則BE的長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•巴中)已知如圖所示,在梯形ABCD中,AD∥BC,點M是AD)的中點.連接BM交AC于N.BM的延長線交CD的延長線于E.
(1)求證:
EM
EB
=
AM
BC

(2)若MN=1cm,BN=3cm,求線段EM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•巴中)已知如圖所示,在平面直角坐標(biāo)系中,四邊形ABC0為梯形,BC∥A0,四個頂點坐標(biāo)分別為A(4,0),B(1,4),C(0,4),O(0,O).一動點P從O出發(fā)以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.兩個動點若其中一個到達終點,另一個也隨之停止.設(shè)其運動時間為t秒.
(1)求過A,B,C三點的拋物線的解析式;
(2)當(dāng)t為何值時,PB與AQ互相平分;
(3)連接PQ,設(shè)△PAQ的面積為S,探索S與t的函數(shù)關(guān)系式.求t為何值時,S有最大值?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案