【題目】如圖,直角△ABC內(nèi)接于⊙O,點(diǎn)D是直角△ABC斜邊AB上的一點(diǎn),過(guò)點(diǎn)D作AB的垂線交AC于E,過(guò)點(diǎn)C作∠ECP=∠AED,CP交DE的延長(zhǎng)線于點(diǎn)P,連結(jié)PO交⊙O于點(diǎn)F.
(1)求證:PC是⊙O的切線;
(2)若PC=3,PF=1,求AB的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有點(diǎn)B(-2,0)和y軸上的動(dòng)點(diǎn)A(0,a),其中a>0,以點(diǎn)A為直角頂點(diǎn)在第二象限內(nèi)作等腰直角三角形ABC,設(shè)點(diǎn)C的坐標(biāo)為(c,d).
(1)當(dāng)a=4時(shí),則點(diǎn)C的坐標(biāo)為( , );
(2)動(dòng)點(diǎn)A在運(yùn)動(dòng)的過(guò)程中,試判斷c+d的值是否發(fā)生變化?若不變,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.
(3)當(dāng)a=4時(shí),在坐標(biāo)平面內(nèi)是否存在點(diǎn)P(不與點(diǎn)C重合),使△PAB與△ABC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:a+,其中a=1010.
如圖是小亮和小芳的解答過(guò)程.
(1) 的解法是錯(cuò)誤的,錯(cuò)誤的原因在于未能正確地運(yùn)用二次根式的性質(zhì):= (a<0);
(2)先化簡(jiǎn),再求值:x+2,其中x=﹣2019.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“文明禮儀”在人們長(zhǎng)期生活和交往中逐漸形成,并以風(fēng)俗、習(xí)慣等方式固定下來(lái)的.我們作為具有五千年文明史的“禮儀之邦”,更應(yīng)該用文明的行為舉止, 合理的禮儀來(lái)待人接物.為促進(jìn)學(xué)生弘揚(yáng)民族文化、展示民族精神,某學(xué)校開(kāi)展“文明禮儀”演講比賽,八年級(jí)(1)班,八年級(jí)(2)班各派出 5 名選手參加比賽,成績(jī)?nèi)鐖D所示.
(1)根據(jù)圖,完成表格:
平均數(shù)(分) | 中位數(shù)(分) | 極差(分) | 方差 | |
八年級(jí)(1)班 | 75 |
| 25 |
|
八年級(jí)(2)班 | 75 | 70 |
| 160 |
(2)結(jié)合兩班選手成績(jī)的平均分和方差,分析兩個(gè)班級(jí)參加比賽選手的成績(jī);
(3)如果在每班參加比賽的選手中分別選出3人參加決賽,從平均分看,你認(rèn)為哪個(gè)班的實(shí)力更強(qiáng)一些? 說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知P是⊙O外的一點(diǎn),OP=4,OP交⊙O于點(diǎn)A,且A是OP的中點(diǎn),Q是⊙O上任意一點(diǎn).
(1)如圖1,若PQ是⊙O的切線,求∠QOP的大小;
(2)如圖2,若∠QOP=90°,求PQ被⊙O截得的弦QB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無(wú)滑動(dòng)滾動(dòng),每旋轉(zhuǎn)60°為滾動(dòng)1次,那么當(dāng)正六邊形ABCDEF滾動(dòng)2017次時(shí),點(diǎn)F的坐標(biāo)是( 。
A. (2017,0) B. (2017,)
C. (2018,) D. (2018,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的各邊,在邊BC的同側(cè)分別作三個(gè)正方形ABDI,BCFE,ACHG.
(1)求證:△BDE≌△BAC;
(2)求證:四邊形ADEG是平行四邊形.
(3)直接回答下面兩個(gè)問(wèn)題,不必證明:
①當(dāng)△ABC滿足條件_____________________時(shí),四邊形ADEG是矩形.
②當(dāng)△ABC滿足條件_____________________時(shí),四邊形ADEG是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問(wèn)題越來(lái)越受到人們的關(guān)注,某校學(xué)生會(huì)為了解節(jié)能減排、垃圾分類知識(shí)
的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.
(1)本次調(diào)查的學(xué)生共有__________人,估計(jì)該校1200 名學(xué)生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請(qǐng)利用畫(huà)樹(shù)狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象過(guò)A(1,1)和B(2,﹣1)
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)求直線y=kx+b與坐標(biāo)軸圍成的三角形的面積;
(3)將一次函數(shù)y=kx+b的圖象沿y軸向下平移3個(gè)單位,則平移后的函數(shù)表達(dá)式為 ,再向右平移1個(gè)單位,則平移后的函數(shù)表達(dá)式為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com