【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點(diǎn)G,連接AG,那么∠AGD的底數(shù)是______度.

【答案】60

【解析】

根據(jù)已知可求得∠BEC的度數(shù),根據(jù)三角形外角定理可求得∠AGD的度數(shù).

解:∵四邊形ABCD是正方形,

ABBCADCD,∠ABC90°,∠ADG=∠CDG,∠ABD45°,

GDGD

∴△ADG≌△CDG,

∴∠AGD=∠CGD

∵∠CGD=∠EGB,

∴∠AGD=∠EGB

∵△ABE是等邊三角形,

ABBE,∠ABE60°,

BEBC,∠EBC150°,

∴∠BEC=∠ECB15°,

∴∠BGE180°﹣∠BEC﹣∠EBG180°﹣15°﹣60°﹣45°=60°,

∴∠AGD60°

故答案為60

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙的外接圓,直線(xiàn)相切于點(diǎn),且

)求證: 平分

)作的平分線(xiàn)于點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy,函數(shù)(x>0)的圖象與直線(xiàn)l1:交于點(diǎn)A,與直線(xiàn)l2x=k交于點(diǎn)B.直線(xiàn)l1l2交于點(diǎn)C

(1) 當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),則此時(shí)k的值為 _______;

(2) 橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn) 記函數(shù)(x>0) 的圖像在點(diǎn)A、B之間的部分與線(xiàn)段AC,BC圍成的區(qū)域(不含邊界)W

①當(dāng)k=3時(shí),結(jié)合函數(shù)圖像,則區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù)是_________;

②若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出k的取值范圍:___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)的圖象交于Am,6),B3,n)兩點(diǎn).

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫(xiě)出x的取值范圍;

3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的盒子里裝有30個(gè)除顏色外其它均相同的球,其中紅球有m個(gè),白球有3m個(gè),其它均為黃球.現(xiàn)小李從盒子里隨機(jī)摸出一個(gè)球,若是紅球,則小李獲勝;小李把摸出的球放回盒子里搖勻,由小馬隨機(jī)摸出一個(gè)球,若為黃球,則小馬獲勝.

(1)當(dāng)m=4時(shí),求小李摸到紅球的概率是多少?

(2)當(dāng)m為何值時(shí),游戲?qū)﹄p方是公平的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,M、N分別是邊ADBC邊上的中點(diǎn),且ABM≌△DCM;E、F分別是線(xiàn)段BMCM的中點(diǎn).

1)求證:平行四邊形ABCD是矩形.

2)求證:EFMN互相垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組.把不等式組的解集在數(shù)軸上表示出來(lái),并寫(xiě)出不等式組的非負(fù)整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教練想從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加射擊錦標(biāo)賽,故先在射擊隊(duì)舉行了一場(chǎng)選拔比賽.在相同的條件下各射靶次,每次射靶的成績(jī)情況如圖所示.

甲射靶成績(jī)的條形統(tǒng)計(jì)圖

乙射靶成績(jī)的折線(xiàn)統(tǒng)計(jì)圖

)請(qǐng)你根據(jù)圖中的數(shù)據(jù)填寫(xiě)下表:

平均數(shù)

眾數(shù)

方差

__________

__________

__________

)根據(jù)選拔賽結(jié)果,教練選擇了甲運(yùn)動(dòng)員參加射擊錦標(biāo)賽,請(qǐng)給出解釋?zhuān)?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2-x-m+1)=0有兩個(gè)不相等的實(shí)數(shù)根

1)求m的取值范圍;

2)若m為符合條件的最小整數(shù),求此方程的根

查看答案和解析>>

同步練習(xí)冊(cè)答案