【題目】已知矩形和點(diǎn),當(dāng)點(diǎn)在上任一位置(如圖所示)時(shí),易證得結(jié)論:,請(qǐng)你探究:當(dāng)點(diǎn)分別在圖、圖中的位置時(shí),、、和又有怎樣的數(shù)量關(guān)系請(qǐng)你寫(xiě)出對(duì)上述兩種情況的探究結(jié)論,并利用圖證明你的結(jié)論.
答:對(duì)圖的探究結(jié)論為________;
對(duì)圖的探究結(jié)論為________;
【答案】
【解析】
結(jié)論均是:.如圖2,過(guò)點(diǎn)P作MN∥AB,交AD于點(diǎn)M,交BC于點(diǎn)N,可得四邊形ABNM和四邊形NCDM均為矩形,根據(jù)(1)中的結(jié)論可得,在矩形ABNM中有PA2+PN2=PB2+PM2①,在矩形NCDM中有PC2+PM2=PD2+PN2②, 利用①+②即可證得結(jié)論;如圖3,過(guò)點(diǎn)P作MN∥AB,交AB的延長(zhǎng)線于點(diǎn)M,交CD的延長(zhǎng)線于點(diǎn)N,用上面的方法解決即可.
結(jié)論均是:.
(1)如圖2,過(guò)點(diǎn)P作MN∥AB,交AD于點(diǎn)M,交BC于點(diǎn)N,
∴四邊形ABNM和四邊形NCDM均為矩形,
根據(jù)(1)中的結(jié)論可得,
在矩形ABNM中可得:PA2+PN2=PB2+PM2①,
在矩形NCDM中可得:PC2+PM2=PD2+PN2②,
①+②得:PA2+PN2+PC2+PM2=PB2+PM2+PD2+PN2,
∴PA2+PC2=PB2+PD2.
(2)如圖3,過(guò)點(diǎn)P作MN∥AB,交AB的延長(zhǎng)線于點(diǎn)M,交CD的延長(zhǎng)線于點(diǎn)N,
∴四邊形BCNM和四邊形ADNM均為矩形,
同樣根據(jù)(1)中的結(jié)論可得,
在矩形BCNM中可得:PC2+PM2=PB2+PN2①,
在矩形ADNM中可得:PA2+PN2=PD2+PM2②,
①+②得:PA2+PN2+PC2+PM2=PD2+PM2+PB2+PN2,
∴PA2+PC2=PB2+PD2.
故答案為: ; .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形的面積為,對(duì)角線,交于點(diǎn),點(diǎn),,,分別是,,,的中點(diǎn),連接,,,得到菱形;點(diǎn),,,分別是,,,的中點(diǎn),連接,,,,得到菱形;…,依此類推,則菱形的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為的正方形的對(duì)角線交于點(diǎn),把邊、分別繞點(diǎn)、同時(shí)逆時(shí)針旋轉(zhuǎn)得四邊形,其對(duì)角線交點(diǎn)為,連接.下列結(jié)論:
①四邊形為菱形;
②;
③線段的長(zhǎng)為;
④點(diǎn)運(yùn)動(dòng)到點(diǎn)的路徑是線段.其中正確的結(jié)論共有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點(diǎn)O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是過(guò)A的一條直線, 且B、C在AE的異側(cè), BD⊥AE于D, CE⊥AE于E.
(1)求證: BD=DE+CE.
(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖②位置時(shí)(BD<CE), 其余條件不變, 問(wèn)BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)給予證明;
(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖③位置時(shí)(BD>CE), 其余條件不變, 問(wèn)BD與DE、CE的數(shù)量關(guān)系如何? 請(qǐng)直接寫(xiě)出結(jié)果, 不需證明.
(4)根據(jù)以上的討論,請(qǐng)用簡(jiǎn)潔的語(yǔ)言表達(dá)BD與DE,CE的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D的切線分別交AB,AC的延長(zhǎng)線于點(diǎn)E,F(xiàn).
(1)求證:AF⊥EF.
(2)探究線段AF、CF、AB之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)雙曲線與直線交于A,B兩點(diǎn)(點(diǎn)A在第三象限),將雙曲線在第一象限的一支沿射線BA的方向平移,使其經(jīng)過(guò)點(diǎn)A,將雙曲線在第三象限的一支沿射線AB的方向平移,使其經(jīng)過(guò)點(diǎn)B,平移后的兩條曲線相交于P,Q兩點(diǎn),此時(shí)我們稱平移后的兩條曲線所圍部分(如圖中陰影部分)為雙曲線的“眸”,PQ為雙曲線的“眸徑”,當(dāng)雙曲線的眸徑為9時(shí),的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com