【題目】探究函數(shù)y=x+ 的圖象與性質(zhì)
(1)函數(shù)y=x+ 的自變量x的取值范圍是;
(2)下列四個函數(shù)圖象中,函數(shù)y=x+ 的圖象大致是
(3)對于函數(shù)y=x+ ,求當(dāng)x>0時,y的取值范圍.
請將下面求解此問題的過程補充完整:
解:∵x>0
∴y=x+
=( )2+( )2
=( ﹣ )2+
∵( ﹣ )2≥0,
∴y .
(4)若函數(shù)y= ,則y的取值范圍是
【答案】
(1)x≠0
(2)C
(3)6;≥6
【拓展運用】
(4)y≤﹣11或y≥1
【解析】解:(1)∵在y=x+ 中,x≠0,
∴x的取值范圍是x≠0.
所以答案是:x≠0.(2)∵x≠0,
∴A中圖象不符合題意;
∵當(dāng)x>0時,x+ >0,
當(dāng)x<0時,x+ <0,
∴函數(shù)y=x+ 的圖象在第一、三象限,
∴B、D中圖象不符合題意,
故選C.(3)解:∵x>0,
∴y=x+ ,
=( )2+( )2 ,
=( ﹣ )2+6,
∵( ﹣ )2≥0,
∴y≥6.
所以答案是:6;≥6.(4)y= =x+ ﹣5.
由(3)可知:當(dāng)x>0時,x+ ≥6;
當(dāng)x<0時,x+ ≤﹣6.
∴y=x+ ﹣5≥6﹣5=1,y=x+ ﹣5≤﹣6﹣5=﹣11.
y的取值范圍是y≤﹣11或y≥1.
所以答案是:y≤﹣11或y≥1.
【考點精析】根據(jù)題目的已知條件,利用反比例函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為CD上一點,連接AE、BD , 且AE、BD交于點F , DE:EC=2:3,則S△DEF:S△ABF=( 。
A.2:3
B.4:9
C.2:5
D.4:25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點E在CB的延長線上,連接AC,AE,∠ACB=∠BAE=45°
(1)求證:AE是⊙O的切線;
(2)若 AB=AD,AC=2 ,tan∠ADC=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在五邊形ABCDE中,∠B=90°,AB=BC=CD=1,AB∥CD,M是CD邊的中點,點P由點A出發(fā),按A→B→C→M的順序運動.設(shè)點P經(jīng)過的路程x為自變量,△APM的面積為y,則函數(shù)y的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,過點D作對DE⊥AB于點E,點F在邊CD上,CF=AE,連結(jié)AF,BF.
(1)求證:四邊形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求證:AF是∠DAB的角平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,E為平面內(nèi)任意一點,連結(jié)DE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到DG,連結(jié)EC,AG.
(1)當(dāng)點E在正方形ABCD內(nèi)部時,
①依題意補全圖形;
②判斷AG與CE的數(shù)量關(guān)系與位置關(guān)系并寫出證明思路.
(2)當(dāng)點B,D,G在一條直線時,若AD=4,DG= ,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,﹣2).
(1)求這兩個函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出y1>y2時自變量x的取值范圍.
(3)連接OA、OB,求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com