已知四邊形ABCD的對角線AC與BD相交于點O,若S△AOB=4,S△COD=9,則四邊形ABCD的面積S四邊形ABCD的最小值為( )
A.21
B.25
C.26
D.36
【答案】分析:分別表示出△AOD、△BOC的面積,即可得到四邊形ABCD的面積表達式,然后利用換元法結合不等式的性質來求得四邊形ABCD的最小面積.
解答:解:設點A到邊BD的距離為h.
如圖,任意四邊形ABCD中,S△AOB=4,S△COD=9;
∵S△AOD=OD•h,S△AOB=OB•h=4,
∴S△AOD=OD•=4×,S△BOC=OB•=9×
=x,則S△AOD=4x,S△BOC=
∴S四邊形ABCD=4x++13≥2+13=12+13=25;
故四邊形ABCD的最小面積為25.
故選B.
點評:此題主要考查了三角形面積的求法、不等式的性質等知識,需要識記的內容有:
不等式的性質:a2+b2-2ab=(a-b)2≥0,即a2+b2≥2ab.(即算術平均數(shù)與幾何平均數(shù)的關系)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD的外接圓⊙O的半徑為2,對角線AC與BD的交點為E,AE=EC,AB=
2
AE,且BD=2
3
,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、已知四邊形ABCD的四邊分別有a,b,c,d.其中a,c是對邊且a2+b2+c2+d2=2ac+2bd,則四邊形是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC與△ADC關于直線AC對稱,連接BD,若已知四邊形ABCD的面積是125,AC=25,則BD的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD的對角線互相垂直,若適當添加一個條件,就能判定該四邊形是菱形.那么這個條件可以是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD的四個頂點的坐標分別為A(0,0),B(9,0),C(7,5),D(2,7),將該四邊形各頂點的橫坐標都增加2,縱坐標都增加3,其面積為(  )

查看答案和解析>>

同步練習冊答案