矩形ABCD中,AB=8,BC=3
5
,點P在邊AB上,且BP=3AP,如果圓P是以點P為圓心,PD為半徑的圓,那么下列判斷正確的是(  )
A、點B、C均在圓P外
B、點B在圓P外、點C在圓P內(nèi)
C、點B在圓P內(nèi)、點C在圓P外
D、點B、C均在圓P內(nèi)
分析:根據(jù)BP=3AP和AB的長度求得AP的長,然后利用勾股定理求得圓P的半徑PD的長,根據(jù)點B、C到P點的距離判斷點P與圓的位置關系即可.
解答:精英家教網(wǎng)解:∵AB=8,點P在邊AB上,且BP=3AP,
∴AP=2,
∴r=PD=
(3
5
)2+22
=7,
PC=
PB2+BC2
=
62+(3
5
)2
=9,
∵PB=6<7,PC=9>7
∴點B在圓P內(nèi)、點C在圓P外
故選C.
點評:本題考查了點與圓的位置關系的判定,根據(jù)點與圓心之間的距離和圓的半徑的大小關系作出判斷即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD中,AB=8,BC=5π.分別以B,D為圓心,AB為半徑畫弧,兩弧分別交對角線BD于點E,F(xiàn),則圖中陰影部分的面積為( 。
A、4πB、5πC、8πD、10π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

矩形ABCD中,AB=3,BC=4,以點A為圓心畫圓,使B,C,D三點中至少有一點在⊙A內(nèi),且至少有一點在⊙A外,則⊙O的半徑r的取值范圍為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•溧水縣一模)如圖,矩形ABCD中,AB=6,BC=3.點E在線段BA上從B點以每秒1個單位的速度出發(fā)向A點運動,F(xiàn)是射線CD上一動點,在點E、F運動的過程中始終保持EF=5,且CF>BE,點P是EF的中點,連接AP.設點E運動時間為ts.

(1)在點E運動過程中,AP的長度是如何變化的?
D
D

A.一直變短     B.一直變長    C.先變長后變短    D.先變短后變長
(2)在點E、F運動的過程中,AP的長度存在一個最小值,當AP的長度取得最小值時,點P的位置應該在
AD的中點
AD的中點

(3)以P為圓心作⊙P,當⊙P與矩形ABCD三邊所在直線都相切時,求出此時t的值,并指出此時⊙P的半徑長..

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形ABCD中,AB=4,AD=5,E是CD上的一點,將△ADE沿AE折疊,點D剛好與BC邊上點F重合,則線段CE的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形ABCD中,AB=8,BC=10,沿AF折疊矩形ABCD,使點D剛好落在邊BC上的點E處,則折痕AF的長為
5
5
5
5

查看答案和解析>>

同步練習冊答案