作业宝如圖,⊙O的半徑為1cm,弦AB、CD的長(zhǎng)度分別為數(shù)學(xué)公式,則弦AC、BD所夾的銳角α為________.

90°
分析:作OE⊥AB于E,OF⊥DC于F,連結(jié)OA、OB、OC、OD、BC,根據(jù)垂徑定理得BE=AB=,CF=DC=,在利用正弦的定義可分別求出∠3=60°,∠4=30°,則根據(jù)等腰三角形的性質(zhì)得∠AOB=2∠3=120°,∠COD=2∠4=60°,然后根據(jù)圓周角定理得∠2=60°,∠1=30°,最后利用三角形外角性質(zhì)求解.
解答:解:作OE⊥AB于E,OF⊥DC于F,連結(jié)OA、OB、OC、OD、BC,如圖,
則AE=BE=AB=,CF=DF=DC=,
在Rt△BOE中,BE=,OB=1,
∴sin∠3=,
∴∠3=60°,
在Rt△OCF中,CF=,OC=1,
∴sin∠4=
∴∠4=30°,
∵OA=OB,OC=OD,
∴∠AOB=2∠3=120°,∠COD=2∠4=60°,
∴∠2=∠AOB=60°,∠1=∠COD=30°
∴∠α=∠1+∠2=90°.
故答案為90°.
點(diǎn)評(píng):考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對(duì)的兩條。部疾榱藞A周角定理和特殊角的三角函數(shù)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點(diǎn),則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點(diǎn)F是BC的中點(diǎn),那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn),則⊙O上格點(diǎn)有
 
個(gè),設(shè)L為經(jīng)過⊙O上任意兩個(gè)格點(diǎn)的直線,則直線L同時(shí)經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點(diǎn),且MP:PN=1:2.若PA=2,則MN的長(zhǎng)為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊(cè)答案