【題目】在平面直角坐標系中,A,B,C,點P為任意一點,已知PAPB,則線段PC的最大值為(

A.3B.5C.8D.10

【答案】C

【解析】

連接OC、OP、PCPAPB可得點P在以O為圓心,AB長為直徑的圓上;再根據(jù)三角形的三邊關(guān)系可得CP≤OP+OC,則當當點P,OC在同一直線上, CP的最大值為OP+OC的長,然后進行計算即可.

解:如圖所示,連接OCOP、PC

PAPB,

∴點P在以O為圓心,AB長為直徑的圓上,

∵△COP

CP≤OP+OC,

∴當點P,O,C在同一直線上,且點PCO延長線上時,CP的最大值為OP+OC的長,

又∵A-3,0),B3,0),C3,4),

AB=6,OC=5OP=AB=3,

∴線段PC的最大值為OP+OC=3+5=8,

故答案為C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=y=kx2-k(k≠0)在同一直角坐標系中的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過點A(-2,0)B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設(shè)點D的橫坐標為.連接AC,BC,DBDC,

(1)求拋物線的函數(shù)表達式;

(2)△BCD的面積等于△AOC的面積的時,求的值;

(3)(2)的條件下,若點M軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點BD,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=3AD=5,AE平分∠BAD,交BCF,交DC延長線于E,則的值為(

A.B.C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)D為銳角ABC內(nèi)一點,∠ADB=ACB+90°,過點BBEBD,BE=BD,連接EC

1)求∠CAD+CBD的度數(shù);

2)若,

①求證:ACD∽△BCE;

②求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C90°,AB1tanA,過AB邊上一點PPEACEPFBCF,EF是垂足,則EF的最小值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,邊上的中線,點關(guān)于直線的對稱點是點,連接并延長到點,使,連接,.,點的距離,則四邊形的周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,以的邊為直徑作,點C上,的弦,,過點C于點F,交于點G,過C的延長線于點E

1)求證:的切線;

2)求證:;

3)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,D,E分別為AB,BC中點,F(xiàn)為AC上一點,且AFE=A,DMEF交AC于點M.

(1)求證:DM=DA;

(2)點G在BE上,且BDG=C,如圖②,求證:DEG∽△ECF;

(3)在圖②中,取CE上一點H,使CFH=B,若BG=1,求EH的長.

查看答案和解析>>

同步練習(xí)冊答案