【題目】在等腰中,,點(diǎn)是直線上一點(diǎn)(不與重合),以為一邊在的右側(cè)作等腰,使,,連結(jié).
(1)如圖1,當(dāng)點(diǎn)在線段上時(shí),如果,則_______°.
(2)設(shè).
①如圖2,當(dāng)點(diǎn)在線段上移動(dòng)時(shí),之間有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
②當(dāng)點(diǎn)在直線上移動(dòng)時(shí),之間有怎樣的數(shù)量關(guān)系?請(qǐng)你直接寫出你的結(jié)論.
【答案】(1);(2)①之間的數(shù)量關(guān)系是,理由見解析;②結(jié)論: ,.
【解析】
(1)先用等式的性質(zhì)得出∠CAN=∠BAM,進(jìn)而得出△ABM≌△ACN,有∠B=∠ACE,最后用等式的性質(zhì)即可得出結(jié)論
(2)①由(1)的結(jié)論即可得出α+β=180°;②同(1)的方法即可得出結(jié)論.
(1),
在△ABM和△ACN中
∴
(2)①解:之間的數(shù)量關(guān)系是
理由:
(已知)
(等式性質(zhì))
即
在和中
(全等三角形對(duì)應(yīng)角相等)
(三角形的內(nèi)角和為180°)
(等量代換)
(等量代換)
②結(jié)論:
1)當(dāng)點(diǎn)(不與重合)在射線上時(shí),
同(1)的方法可得
,
之間的數(shù)量關(guān)系是
2)當(dāng)點(diǎn)(不與重合)在射線的反向延長(zhǎng)線上時(shí),
同(1)的方法可得
,
之間的數(shù)量關(guān)系是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在括號(hào)中填寫理由.如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°( )
∴AB∥CD ( )
∴∠B= ( )
又∵∠B=∠D(已知 ),
∴∠D= ( )
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】交通工程學(xué)理論把在單向道路上行駛的汽車看成連續(xù)的液體,并用流量、速度、密度三個(gè)概念描述車流的基本特征。其中流量q(輛/小時(shí))指單位時(shí)間內(nèi)通過道路指定斷面的車輛數(shù);速度v(千米/小時(shí))指通過道路指定斷面的車輛速度;密度(輛/千米)指通過道路指定斷面單位長(zhǎng)度內(nèi)的車輛數(shù),為配合大數(shù)據(jù)治堵行動(dòng),測(cè)得某路段流量q與速度v之間的部分?jǐn)?shù)據(jù)如下表:
速度v(千米/小時(shí)) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量q(輛/小時(shí)) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根據(jù)上表信息,下列三個(gè)函數(shù)關(guān)系式中,刻畫q,v關(guān)系最準(zhǔn)確的是(只需填上正確答案的序號(hào))① ② ③
(2)請(qǐng)利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車流速為多少時(shí),流量達(dá)到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請(qǐng)結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問題:
①市交通運(yùn)行監(jiān)控平臺(tái)顯示,當(dāng) 時(shí)道路出現(xiàn)輕度擁堵,試分析當(dāng)車流密度k在什么范圍時(shí),該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車車頭之間的距離d(米)均相等,求流量q最大時(shí)d的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC為邊向外作正方形,其面積分別為S1、S2、S3 , 若S1=3,S3=9,則S2的值為( )
A.12
B.18
C.24
D.48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保護(hù)美麗如畫的邛海濕地,西昌市污水處理廠決定先購買兩型污水處理設(shè)備共20臺(tái),對(duì)濕地周邊污水進(jìn)行處理.每臺(tái)型污水處理設(shè)備12萬,每臺(tái)型污水處理設(shè)備10萬,已知2臺(tái)型污水處理設(shè)備和1臺(tái)型污水處理設(shè)備每周處理污水680噸,3臺(tái)型污水處理設(shè)備和2臺(tái)型污水處理設(shè)備每周處理污水1120噸.
(1)求每臺(tái)、型污水處理設(shè)備每周分別可以處理污水多少噸?
(2)經(jīng)預(yù)算,污水處理廠購買設(shè)備的資金不超過230萬元,每周處理污水的量不低于4500噸,請(qǐng)列舉出所有購買方案,并指出所需購買資金最少的方案及最少資金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數(shù)y= (k>0)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,是的中點(diǎn).點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為.設(shè)點(diǎn)的運(yùn)動(dòng)速度為,若使得,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)認(rèn)真閱讀下面的數(shù)學(xué)小探究系列,完成所提出的問題:
(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,過點(diǎn)D做BC邊上的高DE,則DE與BC的數(shù)量關(guān)系是 ,△BCD的面積為 ;
(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=a,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,請(qǐng)用含a的式子表示△BCD的面積,并說明理由;
(3)探究3:如圖③,在等腰三角形ABC中,AB=AC,BC=a,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,試探究用含a的式子表示△BCD的面積,要有探究過程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com