【題目】王阿姨銷售草莓,草莓成本價為每千克10元,她發(fā)現(xiàn)當(dāng)銷售單價為每千克至少10元,但不高于每千克20元時,銷售量y(千克)與銷售單價x(元)的函數(shù)圖象如圖所示:
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)當(dāng)王阿姨銷售草莓獲得的利潤為800元時,求草莓銷售的單價.

【答案】
(1)解:設(shè)y關(guān)于x的函數(shù)解析式為:y=kx+b,將(15,90),(10,100),代入得:

,

解得: ,

故y關(guān)于x的函數(shù)解析式為:y=﹣2x+120(10≤x≤20)


(2)解:由題意可得:800=(﹣2x+120)(x﹣10),

解得:x1=20,x2=50(不合題意舍去),

答:王阿姨銷售草莓獲得的利潤為800元時,草莓銷售的單價為20元


【解析】(1)直接利用待定系數(shù)法求出一次函數(shù)解析式即可;(2)利用利潤=銷量×每千克利潤,進(jìn)而求出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是學(xué)習(xí)數(shù)學(xué)的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當(dāng)且點在直線的上方時,解決下列問題:(友情提示:,,

1)①若,則的度數(shù)為  ;

②若,則的度數(shù)為  ;

2)由(1)猜想的數(shù)量關(guān)系,并說明理由.

3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點B按逆時針方向旋轉(zhuǎn)得到△EBD,點E、點D分別與點A、點C對應(yīng),且點D在邊AC上,邊DE交邊AB于點F,△BDC∽△ABC.已知BC= ,AC=5,那么△DBF的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C在同一直線上,線段AB=10cmAC=6cm,MAB的中點, NAC的中點,則線段MN的長度是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD為 O的直徑,弦AE//CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使 PED= C.

(1)求證:PE是 O的切線;
(2)求證:ED平分 BEP;
(3)若 O的半徑為5,CF=2EF,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列一段文字,再回答后面的問題.

已知在平面內(nèi)兩點P1(x1,y1),P2(x2,y2),這兩點間的距離P1P2=,同時,當(dāng)兩點所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間距離公式可簡化為|x2﹣x1||y2﹣y1|.

(1)已知A(3,3),B(﹣2,﹣1),試求A,B兩點間的距離;

(2)已知A,B在平行于y軸的直線上,點A的縱坐標(biāo)為7,點B的縱坐標(biāo)為﹣2,試求A,B兩點間的距離;

(3)已知一個三角形各頂點坐標(biāo)為A(0,5),B(﹣3,2),C(3,2),你能判斷此三角形的形狀嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,選段AB=4,以AB為直徑作半圓O,點C為弧AB的中點,點P為直徑AB上一點,聯(lián)結(jié)PC,過點C作CD∥AB,且CD=PC,過點D作DE∥PC,交射線PB于點E,PD與CE相交于點Q.
(1)若點P與點A重合,求BE的長;
(2)設(shè)PC=x, =y,當(dāng)點P在線段AO上時,求y與x的函數(shù)關(guān)系式及定義域;
(3)當(dāng)點Q在半圓O上時,求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決問題:

一輛貨車從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.

(1)以超市為原點,以向東的方向為正方向,用1個單位長度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.

(2)小明家距小彬家多遠(yuǎn)?

(3)貨車一共行駛了多少千米?

(4)貨車每千米耗油0.2升,這次共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一,∠ACB=90°,點D在AC上,DE⊥AB垂足為E,交BC的延長線于F,DE=EB,EG=EB,
(1)求證:AG=DF;
(2)過點G作GH⊥AD,垂足為H,與DE的延長線交于點M,如圖二 找出圖中與AB相等的線段,并證明.

查看答案和解析>>

同步練習(xí)冊答案