已知。
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并予以證明;
(3)當(dāng)a>1時(shí),求使的取值范圍。
解:(1)設(shè) 
 
則x+1 >0 且 1-x >0
解得:-1<x<1
(2)  證明 知f(x)是奇函數(shù)
(3).當(dāng)a>1時(shí), 由


解得解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山東濟(jì)寧卷)數(shù)學(xué)2(解析版) 題型:解答題

閱讀材料:若a,b都是非負(fù)實(shí)數(shù),則.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.

證明:∵,∴

.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.

舉例應(yīng)用:已知x>0,求函數(shù)的最小值.

解:.當(dāng)且僅當(dāng),即x=1時(shí),“=”成立.

當(dāng)x=1時(shí),函數(shù)取得最小值,y最小=4.

問題解決:汽車的經(jīng)濟(jì)時(shí)速是指汽車最省油的行駛速度.某種汽車在每小時(shí)70~110公里之間行駛時(shí)(含70公里和110公里),每公里耗油升.若該汽車以每小時(shí)x公里的速度勻速行駛,1小時(shí)的耗油量為y升.

(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);

(2)求該汽車的經(jīng)濟(jì)時(shí)速及經(jīng)濟(jì)時(shí)速的百公里耗油量(結(jié)果保留小數(shù)點(diǎn)后一位).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:模擬題 題型:解答題

閱讀以下的材料: 
如果兩個(gè)正數(shù)a,b,即a>0,b>0,有下面的不等式:
當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào),我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:
例:已知x>0,求函數(shù)的最小值。
解:令,則有,得,當(dāng)且僅當(dāng)時(shí),即時(shí)x=2,函數(shù)有最小值,最小值為2。
根據(jù)上面回答下列問題
① 已知x>0,則當(dāng)x=______時(shí),函數(shù)取到最小值,最小值為______;
② 用籬笆圍一個(gè)面積為100cm2的矩形花園,問這個(gè)矩形的長、寬各為多少時(shí),所用的籬笆最短,最短的籬笆周長是多少;
③已知x>0,則自變量取何值時(shí),函數(shù)取到最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北省模擬題 題型:解答題

閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,有下面的不等式:
當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào)
我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:
例:已知x>0,求函數(shù)的最小值。
解:令a=x,b=,則有,得,當(dāng)且僅當(dāng)時(shí),即x=2時(shí),函數(shù)有最小值,最小值為2。
根據(jù)上面回答下列問題:
①已知x>0,則當(dāng)x=____時(shí),函數(shù)取到最小值,最小值為____;
②用籬笆圍一個(gè)面積為100m2的矩形花園,問這個(gè)矩形的長、寬各為多少時(shí),所用的籬笆最短,最短的籬笆周長是多少;
③已知x>0,則自變量x取何值時(shí),函數(shù)取到最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:若a,b都是非負(fù)實(shí)數(shù),則.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.

證明:∵,∴

.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.

舉例應(yīng)用:已知x>0,求函數(shù)的最小值.

解:.當(dāng)且僅當(dāng),即x=1時(shí),“=”成立.

當(dāng)x=1時(shí),函數(shù)取得最小值,y最小=4.

問題解決:汽車的經(jīng)濟(jì)時(shí)速是指汽車最省油的行駛速度.某種汽車在每小時(shí)70~110公里之間行駛時(shí)(含70公里和110公里),每公里耗油升.若該汽車以每小時(shí)x公里的速度勻速行駛,1小時(shí)的耗油量為y升.

(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);

(2)求該汽車的經(jīng)濟(jì)時(shí)速及經(jīng)濟(jì)時(shí)速的百公里耗油量(結(jié)果保留小數(shù)點(diǎn)后一位).

查看答案和解析>>

同步練習(xí)冊答案