年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正比例函數(shù)y1=k1x和反比例函數(shù)y2=的圖象交于A(1,2),B兩點(diǎn),給出下列結(jié)論:
①k1<k2;
②當(dāng)x<﹣1時,y1<y2;
③當(dāng)y1>y1時,x>1;
④當(dāng)x<0時,y2隨x的增大而減小.
其中正確的有( 。
| A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與x軸平行,且與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂,點(diǎn)M到線段AB的距離稱為碟高.
(1)拋物線y=x2對應(yīng)的碟寬為 ;拋物線y=4x2對應(yīng)的碟寬為 ;拋物線y=ax2(a>0)對應(yīng)的碟寬為 ;拋物線y=a(x﹣2)2+3(a>0)對應(yīng)的碟寬為 ;
(2)拋物線y=ax2﹣4ax﹣(a>0)對應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點(diǎn),現(xiàn)將(2)中求得的拋物線記為y1,其對應(yīng)的準(zhǔn)蝶形記為F1.
①求拋物線y2的表達(dá)式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn= ,F(xiàn)n的碟寬有端點(diǎn)橫坐標(biāo)為 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點(diǎn)是否在一條直線上?若是,直接寫出該直線的表達(dá)式;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形ABCD中,AD=,F(xiàn)是DA延長線上一點(diǎn),G是CF上一點(diǎn),且∠ACG=∠AGC,∠GAF=∠F=20°,則AB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
甲、乙兩名同學(xué)進(jìn)入初四后,某科6次考試成績?nèi)鐖D:
(1)請根據(jù)下圖填寫如表:
平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) | 極差 | |
甲 | 75 |
| 75 |
|
|
乙 |
| 33.3 |
|
| 15 |
(2)請你分別從以下兩個不同的方面對甲、乙兩名同學(xué)6次考試成績進(jìn)行分析:
①從平均數(shù)和方差相結(jié)合看;②從折線圖上兩名同學(xué)分?jǐn)?shù)的走勢上看,你認(rèn)為反映出什么問題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個正方體的表面展開圖如圖所示,六個面上各有一字,連起來的意思是“預(yù)祝中考成功”,把它折成正方體后,與“成”相對的字是( 。
| A. | 中 | B. | 功 | C. | 考 | D. | 祝 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com