【題目】如圖,點C在線段AB上,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長;

(2)若C為線段AB上任一點,滿足AC+CB=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由.

【答案】(1)7cm;(2)a.

【解析】

試題分析:(1)根據(jù)“點M、N分別是AC、BC的中點”,先求出MC、CN的長度,再利用MN=CM+CN即可求出MN的長度;

(2)與(1)同理,先用AC、BC表示出MC、CN,MN的長度就等于AC與BC長度和的一半.

解:(1)點M、N分別是AC、BC的中點,

CM=AC=4cm,CN=BC=3cm,

MN=CM+CN=4+3=7cm;

(2)同(1)可得CM=AC,CN=BC,

MN=CM+CN=AC+BC=(AC+BC)=a.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中國古代對勾股定理有深刻的認識.

(1)三國時代吳國數(shù)學家趙爽第一次對勾股定理加以證明:用四個全等的圖1所示的直角三角形拼成一個圖2所示的大正方形,中間空白部分是一個小正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊分別為a,b,求(a+b)2的值;

(2)清朝的康熙皇帝對勾股定理也很有研究,他著有《積求勾股法》:用現(xiàn)代的數(shù)學語言描述就是:若直角三角形的三邊長分別為3,4,5的整數(shù)倍,設其面積為S,則求其邊長的方法為:第一步=m;第二步: =k;第三步:分別用3,4,5乘k,得三邊長.當面積S等于150時,請用“積求勾股法”求出這個直角三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?(   )

A. AB∥CD,AD=BC B. AB=CD,AD=BC

C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:tan260°+4sin30°cos45°
(2)解方程:x2﹣4x+3=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】棱長為a的小正方體,按照如圖所示的方法一直維續(xù)擺放,自上而下分別叫第1層、第2層、……n(n0)層,第n層的小方體的個數(shù)記為S.

(1)完成下表:

n

1

2

3

4

S

1

3

_____

_____

(2)上述活動中,自變量和因變量分別是什么?

(3)研究上表可以發(fā)現(xiàn)Sn的增大而增大,且有一定的規(guī)律,請你用式子來表示Sn的關系,并計算當n=10S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點D作DE⊥AC,垂足為F,DE與AB相交于點E.
(1)求證:ABAF=CBCD;
(2)已知AB=15cm,BC=9cm,P是線段DE上的動點.設DP=x cm,梯形BCDP的面積為ycm2
①求y關于x的函數(shù)關系式.
②y是否存在最大值?若有求出這個最大值,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,若sinA= , 則cosB的值是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(3,4),點B(﹣1,1),在x軸上有兩動點E、F,且EF=1,線段EFx軸上平移,當四邊形ABEF的周長取得最小值時,點E的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】東臺教育局為幫助全市貧困師生舉行一日捐活動,甲、乙兩校教師各捐款30000元,已知“……”,設乙學校教師有x人,則可得方程,根據(jù)此情景,題中用“……”表示的缺失的條件應補(

A. 乙校教師比甲校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%

B. 甲校教師比乙校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%

C. 甲校教師比乙校教師人均多捐20元,且甲校教師的人數(shù)比乙校教師的人數(shù)多20%

D. 乙校教師比甲校教師人均多捐20元,且乙校教師的人數(shù)比甲校教師的人數(shù)多20%

查看答案和解析>>

同步練習冊答案