【題目】如圖,D 是△ABC 的 BC 邊上一點,AB 10,AD 6,DC 2AD,.
(1)求 AC 的長;
(2)求△ABC 的面積.
【答案】(1) (2)60
【解析】
(1)由DC=2AD,根據(jù)AD的長求出DC的長,進而求出BD的長,在三角形ABD中,由AB,AD以及BD的長,利用勾股定理的逆定理判斷得到三角形為直角三角形,運用勾股定理即可求AC的長.
(2)求BC的長,運用三角形的面積公式即可求出三角形ABC面積.
(1)∵AD=6,DC=2AD,
∴DC=12,
∵,
∴BD=8
在△ABD中,AB=10,AD=6,BD=8,
∵AB2=AD2+BD2,
∴△ABD為直角三角形,即AD⊥BC,
∴AC2= AD2+CD2=180
∴AC=
(2)由(1)得:AD⊥BC
∵BC=BD+DC=8+12=20,AD=6,
∴S△ABC=×20×6=60.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,已知,,
(1)畫的垂直平分線交、于點、(保留作圖痕跡,作圖痕跡請加黑描重);
(2)求的度數(shù);
(3)若,求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊直角三角板ABC(∠A=30°)的斜邊AB與一個以r為半徑的圓輪子相靠,若BD=1,則r等于( )
A. 2 B. C. 1.5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了探索三角形的內(nèi)切圓半徑r與三角形的周長C、面積S之間的關(guān)系,在數(shù)學(xué)實驗活動中,選取等邊三角形圖甲和直角三角形圖乙進行研究.已知⊙O是△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn).
(1)用刻度尺分別量出表中未量度的△ABC的長,填入空格處,并計算出周長C和面積S(結(jié)果精確到0.1);
(2)觀察圖形,利用上表實驗數(shù)據(jù)分析、猜測特殊三角形的r與C,S之間的關(guān)系,判斷這種關(guān)系對任意三角形(圖丙)是否也成立,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為△ABC的內(nèi)切圓,切點分別為D,E,F(xiàn),∠C=90°,BC=3,AC=4.
(1)求△ABC的面積;
(2)求⊙O的半徑;
(3)求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張正方形紙片,剪成四個大小形狀一樣的小正方形,然后將其中的一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進行下去;
(1)填表
剪的次數(shù) | 1 | 2 | 3 | 4 | 5 |
正方形個數(shù) | 4 | 7 | 10 |
|
|
(2)如果剪n次,共剪出多少個小正方形?
(3)能否經(jīng)過若干次分割后共得到2019片紙片?若能,請直接寫出相應(yīng)的次數(shù),若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電力公司為鼓勵市民節(jié)約用電,采取按月用電量分段收費辦法,已知某戶居民每月應(yīng)交電費y(元)與用電量x(度)的函數(shù)圖象是一條折線(如圖),根據(jù)圖象解下列問題:
(1)寫出y與x的函數(shù)關(guān)系式;
(2)利用函數(shù)關(guān)系式,說明電力公司采取的收費標(biāo)準;
(3)若該用戶某月用電60度,則應(yīng)繳費多少元?若該用戶某月繳費105元時,則該用戶該月用了多少度電?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com