【題目】綜合與實(shí)踐
操作發(fā)現(xiàn)
如圖,在平面直角坐標(biāo)系中,已知線段兩端點(diǎn)的坐標(biāo)分別為,,點(diǎn)的坐標(biāo)為,將線段沿方向平移,平移的距離為的長(zhǎng)度.
(1)畫(huà)出平移后的線段,直接寫出點(diǎn)對(duì)應(yīng)點(diǎn)的坐標(biāo);
(2)連接,,,已知平分,求證:;
拓展探索
(3)若點(diǎn)為線段上一動(dòng)點(diǎn)(不含端點(diǎn)),連接,,試猜想,和之間的關(guān)系,并說(shuō)明理由.
【答案】(1)點(diǎn)的坐標(biāo)為;(2)見(jiàn)解析;(3),理由見(jiàn)解析
【解析】
(1)按要求作出圖形,并根據(jù)平移的性質(zhì)寫出點(diǎn)N的坐標(biāo)即可;
(2)由平移的性質(zhì)可得出,,再由平行的性質(zhì)和角平分線的定義可得出;
(3)過(guò)點(diǎn)作交于點(diǎn),由平行的性質(zhì)容易證明。
解:(1)所作線段如圖所示.
點(diǎn)的坐標(biāo)為.
(2)證明:根據(jù)平移的性質(zhì),可知,,.
∴,.
∵平分,
∴.
∴.
(3).
理由如下:
如圖,過(guò)點(diǎn)作交于點(diǎn),
又∵,
∴.
∴,.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB∥CD,點(diǎn)E為平面內(nèi)一點(diǎn),BE⊥CE于E.
(1)如圖1,請(qǐng)直接寫出∠ABE和∠DCE之間的數(shù)量關(guān)系;
(2)如圖2,過(guò)點(diǎn)E作EF⊥CD,垂足為F,求證:∠CEF=∠ABE;
(3)如圖3,在(2)的條件下,作EG平分∠CEF,交DF于點(diǎn)G,作ED平分∠BEF,交CD于D,連接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是△ABC的邊AB的延長(zhǎng)線上一點(diǎn),點(diǎn)F是邊BC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合).以BD、BF為鄰邊作平行四邊形BDEF,又APBE(點(diǎn)P、E在直線AB的同側(cè)),如果,那么△PBC的面積與△ABC面積之比為【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,AB=AC,∠ABC =,D是BC邊上一點(diǎn),以AD為邊作,使AE=AD,+=180°.
(1)直接寫出∠ADE的度數(shù)(用含的式子表示);
(2)以AB,AE為邊作平行四邊形ABFE,
①如圖2,若點(diǎn)F恰好落在DE上,求證:BD=CD;
②如圖3,若點(diǎn)F恰好落在BC上,求證:BD=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平行四邊形ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.
求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)三班同學(xué)們就該校學(xué)生如何到校問(wèn)題進(jìn)行了一次調(diào)查,并將調(diào)查結(jié)果制成了條形圖和扇形統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表信息完成下列各題:
(1)此次共調(diào)查了___________位學(xué)生.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)這個(gè)學(xué)校有1000名學(xué)生,估計(jì)坐公交車的人有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1.直線AD∥EF,點(diǎn)B,C分別在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求證:AB⊥BD;
(2)如圖2,BG⊥AD于點(diǎn)G,求證:∠ACB=2∠ABG;
(3)在(2)的條件下,如圖3,CH平分∠ACB交BG于點(diǎn)H,設(shè)∠ABG=α,請(qǐng)直接寫出∠BHC的度數(shù).(用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)O是菱形ABOC的一個(gè)頂點(diǎn),邊OB落在x軸的負(fù)半軸上,且cos∠BOC=,頂點(diǎn)C的坐標(biāo)為(a,4),反比例函數(shù)的圖象與菱形對(duì)角線AO交于D點(diǎn),連接BD,當(dāng)BD⊥x軸時(shí),k的值是( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com