【題目】在矩形ABCD中,點F在AD延長線上,且DF=DC,M為AB邊上一點,N為MD的中點,點E在直線CF上,且BN=NE.
(1)如圖1,若AB=BC=6,BM=AB,E為線段FC上的點,試求NE的長;
(2)如圖2,若AB<BC,E為線段FC延長線上的點,連結(jié)BE,求證:BE=NE.
【答案】(1)NE=5;(2)證明見解析
【解析】
(1)延長BN交CD的延長線于點G,連接BE、GE,過E作EH⊥CE,由AAS證明△BMN≌△GDN,得出BM=DG,BN=GN,由勾股定理求出BG,即可得出答案;
(2)延長BN交CD的延長線于點G,連接GE,GE交AD于點Q,過E作EH⊥CE,交DC的延長線于點H,由AAS證得△BMN≌△GDN,得出BN=NG=NE,則△BEG是直角三角形,∠BEG=90°,再由ASA證得△ECB≌△EHG得出EB=EG,證得△BNE是等腰直角三角形,即可得出結(jié)論.
(1)解:延長BN交CD的延長線于點G,連接BE、GE,過E作EH⊥CE,交CD于點H.
∵四邊形ABCD是矩形,AB=BC=6,
∴∠BCD=90°,AB∥CG,四邊形ABCD是正方形,
∴∠MBN=∠DGN,CD=BC=6,
∵N為MD的中點,
∴MN=DN.在△BMN和△GDN中, ,
∴△BMN≌△GDN(AAS).
∴BM=DG,BN=GN.
∵BM=AB=2,
∴DG=2,
∴CG=CD+DG=8,
在Rt△BCG中,由勾股定理得:BG===10,
∴BN=BG=5,
∵BN=NE,
∴NE=5;
(2)證明:延長BN交CD的延長線于點G,連接GE,GE交AD于點Q,過E作EH⊥CE,交DC的延長線于點H,如圖2所示:
∵四邊形ABCD是矩形,
∴AB∥CG,
∴∠MBN=∠DGN,∠BMN=∠GDN,
∵N為MD的中點,
∴MN=DN,
在△BMN和△GDN中,,
∴△BMN≌△GDN(AAS),
∴BN=NG=NE,
∴△BEG是直角三角形,∠BEG=90°,
∵EH⊥CE,
∴∠CEH=90°.
∴∠BEG=∠CEH,
∴∠BEC=∠GEH,
∵DF=DC,∠CDF=90°,
∴∠DCF=45°,
∴∠CHE=∠HCE=45°,
∴EC=EH,
∵∠ECB=∠HCB﹣∠HCE=90°﹣45°=45°,
∴∠ECB=∠EHG,在△ECB和△EHG中,,
∴△ECB≌△EHG(ASA),
∴EB=EG,
∵BN=NG,
∴BN⊥NE,
∴△BNE是等腰直角三角形,
∴BE=NE.
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且經(jīng)過弦CD的中點H,已知sin∠CDB=,BD=5,則AH的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為( ).
A. 3 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為6cm,B為⊙O外一點,OB交⊙O于點A,AB=OA,動點P從點A出發(fā),以π cm/s的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當點P運動的時間為______時,BP與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標中,D是正方形ABCO的邊AB上一點,以OD為邊的等邊△ODE,點E在x軸正半軸上,若點B的坐標為(3,3),則點E的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店專售一款電動牙刷,其成本為20元/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(元/支)之間存在如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱“新冠肺炎”)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,李老師準備了四張背面都一樣的卡片A、B、C、D,每張卡片的正面標有字母a、b、c表示三條線段(如下圖).把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機抽取一張卡片后不放回,再隨機抽取一張.
⑴ 李老師隨機抽取一張卡片,抽到卡片B的概率等于 ;
⑵ 求李老師抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com