【題目】已知 x1、x2是一元二次方程4kx2﹣4kx+k+1=0的兩個(gè)實(shí)數(shù)根.
(1)求k的取值范圍.
(2)是否存在實(shí)數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在求出k的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)k<0;(2)不存在這樣k的值.
【解析】
(1)根據(jù)已知可知,方程有兩個(gè)實(shí)數(shù)根,那么△≥0,解不等式即可;
(2)由于方程有兩個(gè)實(shí)數(shù)根,那么根據(jù)根與系數(shù)的關(guān)系可得x1+x2=1,x1x2=,然后把x1+x2、x1x2代入(2x1-x2)(x1-2x2)=-中,進(jìn)而可求k的值.
(1)∵x1、x2是一元二次方程4kx2﹣4kx+k+1=0的兩個(gè)實(shí)數(shù)根,
∴△=b2﹣4ac=16k2﹣4×4k(k+1)=﹣16k≥0,且4k≠0,
解得k<0;
(2)∵x1、x2是一元二次方程4kx2﹣4kx+k+1=0的兩個(gè)實(shí)數(shù)根,
∴x1+x2=1,x1x2=,
∴(2x1﹣x2)(x1﹣2x2)=2x12﹣4x1x2﹣x1x2+2x22=2(x1+x2)2﹣9x1x2=2×12﹣9×=2﹣,
若2﹣=﹣成立,
解上述方程得,k=,
∵(1)中k<0,(2)中k=,
∴矛盾,
∴不存在這樣k的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,AC是對(duì)角線,點(diǎn)P為矩形外一點(diǎn)且滿足AP=PC,AP⊥PC,PC交AD于點(diǎn)N,連接DP,過(guò)點(diǎn)P作PM⊥PD交AD于M.
(1)若AP=5,AB=BC,求矩形ABCD的面積;
(2)若CD=PM,試判斷線段AC、AP、PN之間的關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一艘輪船在近海處由西向東航行,點(diǎn)C處有一燈塔,燈塔附近30海里的圓形區(qū)域內(nèi)有暗礁,輪船在A處測(cè)得燈塔在北偏東60°方向上,輪船又由A向東航行40海里到B處,測(cè)得燈塔在北偏東30°方向上.
(1)求輪船在B處時(shí)到燈塔C處的距離是多少?
(2)若輪船繼續(xù)向東航行,有無(wú)觸礁危險(xiǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,點(diǎn)D是AB延長(zhǎng)線上的一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,AC平分∠DAE.
(1)DE與⊙O有何位置關(guān)系?請(qǐng)說(shuō)明理由.
(2)若AB=6,CD=4,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,若AC⊥BC,則a的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△OAB的直角邊OA在x軸上,頂點(diǎn)B的坐標(biāo)為(6,8),直線CD交AB于點(diǎn)D(6,3),交x軸于點(diǎn)C(12,0).
(1)求直線CD的函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)P在x軸上從點(diǎn)(﹣10,0)出發(fā),以每秒1個(gè)單位的速度向x軸正方向運(yùn)動(dòng),過(guò)點(diǎn)P作直線l垂直于x軸,設(shè)運(yùn)動(dòng)時(shí)間為t.
①點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在某個(gè)位置,使得∠PDA=∠B?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
②請(qǐng)?zhí)剿鳟?dāng)t為何值時(shí),在直線l上存在點(diǎn)M,在直線CD上存在點(diǎn)Q,使得以OB為一邊,O,B,M,Q為頂點(diǎn)的四邊形為菱形,并求出此時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Q是弧AB與弦AB所圍成的圖形的內(nèi)部的一定點(diǎn),P是弦AB上一動(dòng)點(diǎn),連接PQ并延長(zhǎng)交弧AB于點(diǎn)C,連接BC.已知AB=6cm,設(shè)A,P兩點(diǎn)間的距離為xcm,P,C兩點(diǎn)間的距離為y1cm,A,C兩點(diǎn)間的距離為y2cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2,隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)確定自變量x的取值范圍是 .
(2)按下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了y1,y2與x的幾組對(duì)應(yīng)值.
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 5.62 | 4.67 | 3.76 | 2.65 | 3.18 | 4.37 | |
y2/cm | 5.62 | 5.59 | 5.53 | 5.42 | 5.19 | 4.73 | 4.11 |
(3)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y1),(x,y2),并面出函數(shù)y1,y2的圖象.
(4)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)△APC為等腰三角形時(shí),AP的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖矩形紙片ABCD中,,,P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別是E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com