【題目】某商場(chǎng)將進(jìn)貨價(jià)為40元的臺(tái)燈以50元的銷售價(jià)售出,平均每月能售出800個(gè).市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)每上漲1元時(shí),其銷售量就將減少10個(gè).設(shè)每個(gè)臺(tái)燈的銷售價(jià)上漲元.
(1) 試用含的代數(shù)式填空:
①漲價(jià)后,每個(gè)臺(tái)燈的利潤(rùn)為 元;
②漲價(jià)后,商場(chǎng)的臺(tái)燈平均每月的銷售量為 臺(tái);
(2) 如果商場(chǎng)要想銷售總利潤(rùn)平均每月達(dá)到20000元,商場(chǎng)經(jīng)理甲說(shuō)“在原售價(jià)每臺(tái)50元的基礎(chǔ)上再上漲40元,可以完成任務(wù)”,商場(chǎng)經(jīng)理乙說(shuō)“不用漲那么多,在原售價(jià)每臺(tái)50元的基礎(chǔ)上再上漲30元就可以了”,試判斷經(jīng)理甲與乙的說(shuō)法是否正確,并說(shuō)明理由.
【答案】(1)①10+;②800-10;(2)甲、乙的說(shuō)法都對(duì).
【解析】
(1)①利潤(rùn)=售價(jià)-進(jìn)貨價(jià);
②根據(jù)“當(dāng)臺(tái)燈的銷售單價(jià)每上漲1元時(shí),其銷售量就將減少10個(gè)”進(jìn)行計(jì)算;
(2)根據(jù)平均每月能售出800個(gè)和銷售價(jià)每上漲1元時(shí),其銷售量就將減少10個(gè)之間的關(guān)系列出式子,再分兩種情況討論,求出每月的銷售利潤(rùn),再進(jìn)行比較即可.
解:(1)①漲價(jià)后,每個(gè)臺(tái)燈的利潤(rùn)為:50+a-40=10+a(元);
②漲價(jià)后,商場(chǎng)的臺(tái)燈平均每月的銷售量為:800-10a(臺(tái));
(2)甲、乙的說(shuō)法都對(duì),理由如下:
該商場(chǎng)臺(tái)燈的月銷售利潤(rùn)為:(10+a)(800-10a);
當(dāng)a=40時(shí),(10+a)(800-10a)=(10+40)(800-10×40)=20000(元);
當(dāng)a=30時(shí),(10+a)(800-10a)=(10+30)(800-10×30)=20000(元);
所以甲、乙的說(shuō)法都對(duì).
故答案為:(1)①10+;②800-10;(2)甲、乙的說(shuō)法都對(duì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過(guò)點(diǎn)G作EF∥BC交AB于E,交AC于F,過(guò)點(diǎn)G作GD⊥AC于D,下列四個(gè)結(jié)論:
①EF=BE+CF;②∠BGC=90°+∠A;③點(diǎn)G到△ABC各邊的距離相等;④設(shè)GD=m,AE+AF=n,則S△AEF=mn.其中正確的結(jié)論有( 。
A.①②④B.①③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)三位數(shù),十位數(shù)字等于百位數(shù)字與個(gè)位數(shù)字的平均數(shù),我們稱這個(gè)三位數(shù)為“順子數(shù)”,例如:630,123.
如果一個(gè)三位數(shù),十位數(shù)字等于百位數(shù)字與個(gè)位數(shù)字的積的算術(shù)平方根,我們稱這個(gè)三位數(shù)為“和諧數(shù)”,例如:139,124.
(1)若三位數(shù)是“順子數(shù)”,且各位數(shù)字之和大于7小于10,且百位數(shù)字a使得一元二次方程(a﹣5)x2+2ax+a﹣6=0有實(shí)數(shù)根,求這個(gè)“順子數(shù)”;
(2)若三位數(shù)既是“順子數(shù)”又是“和諧數(shù)”,請(qǐng)?zhí)剿鱝,b,c三者的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm, BC=12cm.點(diǎn)P從點(diǎn)C處出發(fā)以1cm/s向A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā)以2cm/s向C點(diǎn)勻速移動(dòng),若一個(gè)點(diǎn)到達(dá)目的停止運(yùn)動(dòng)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).運(yùn)動(dòng)時(shí)間為t秒;
(1)用含有t的代數(shù)式表示BQ、CP的長(zhǎng);
(2)寫出t的取值范圍;
(3)用含有t的代數(shù)式 表示Rt△PCQ和四邊形APQB的面積;
(4)當(dāng)P、Q處在什么位置時(shí),四邊形PQBA的面積最小,并求這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017山東日照)已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:
①拋物線過(guò)原點(diǎn);
②4a+b+c=0;
③a﹣b+c<0;
④拋物線的頂點(diǎn)坐標(biāo)為(2,b);
⑤當(dāng)x<2時(shí),y隨x增大而增大.
其中結(jié)論正確的是( )
A. ①②③ B. ③④⑤ C. ①②④ D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=12,AB=CD,BD=15,點(diǎn)E從D點(diǎn)出發(fā),以每秒4個(gè)單位的速度沿D→A→D勻速移動(dòng),點(diǎn)F從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿CB向點(diǎn)B作勻速移動(dòng),點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動(dòng),三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動(dòng),假設(shè)移動(dòng)時(shí)間為t秒.
(1)試說(shuō)明:AD∥BC;
(2)在移動(dòng)過(guò)程中,小明發(fā)現(xiàn)有△DEG與△BFG全等的情況出現(xiàn),請(qǐng)你探究這樣的情況會(huì)出現(xiàn)幾次?并分別求出此時(shí)的移動(dòng)時(shí)間t和G點(diǎn)的移動(dòng)距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,ACB和DCE都是等腰直角三角形,∠ACB=∠DCE=90,連接AE、BD交于點(diǎn)O. AE與DC交于點(diǎn)M,BD與AC交于點(diǎn)N.
(1)如圖①,求證:AE=BD;
(2)如圖②,若AC=DC,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖②中四對(duì)全等的直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,點(diǎn)是邊所在直線上的一個(gè)動(dòng)點(diǎn),與交于點(diǎn),與邊所在直線交于點(diǎn).
在圖①中,,直接寫出的值;
在圖②中,,直接寫出的值;
在圖③中,,先寫出的值,再加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com