如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱軸與x軸交于點(diǎn)D.直線y=-2x-1經(jīng)過拋物線上一點(diǎn)B(-2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱軸交于點(diǎn)F.
(1)求m的值及該拋物線對(duì)應(yīng)的解析式;
(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱軸向上以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形?若能,請(qǐng)直接寫出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說明理由.

【答案】分析:(1)首先求出點(diǎn)B的坐標(biāo)和m的值,然后利用待定系數(shù)法求出拋物線的解析式;
(2)△ADP與△ADC有共同的底邊AD,因?yàn)槊娣e相等,所以AD邊上的高相等,即為1;從而得到點(diǎn)P的縱坐標(biāo)為1,再利用拋物線的解析式求出點(diǎn)P的縱坐標(biāo);
(3)如解答圖所示,在點(diǎn)M的運(yùn)動(dòng)過程中,依次出現(xiàn)四個(gè)菱形,注意不要漏解.針對(duì)每一個(gè)菱形,分別進(jìn)行計(jì)算,求出線段MF的長(zhǎng)度,從而得到運(yùn)動(dòng)時(shí)間t的值.
解答:解:(1)∵點(diǎn)B(-2,m)在直線y=-2x-1上
∴m=-2×(-2)-1=4-1=3,
所以,點(diǎn)B(-2,3),
又∵拋物線經(jīng)過原點(diǎn)O,
∴設(shè)拋物線的解析式為y=ax2+bx,
∵點(diǎn)B(-2,3),A(4,0)在拋物線上,
,
解得:
∴設(shè)拋物線的解析式為

(2)∵P(x,y)是拋物線上的一點(diǎn),
,
若S△ADP=S△ADC,
,,
又∵點(diǎn)C是直線y=-2x-1與y軸交點(diǎn),
∴C(0,-1),
∴OC=1,
,即,
解得:
∴點(diǎn)P的坐標(biāo)為

(3)結(jié)論:存在.
∵拋物線的解析式為
∴頂點(diǎn)E(2,-1),對(duì)稱軸為x=2;
點(diǎn)F是直線y=-2x-1與對(duì)稱軸x=2的交點(diǎn),∴F(2,-5),DF=5.
又∵A(4,0),
∴AE=
如右圖所示,在點(diǎn)M的運(yùn)動(dòng)過程中,依次出現(xiàn)四個(gè)菱形:
①菱形AEM1Q1
∵此時(shí)EM1=AE=
∴M1F=DF-DE-DM1=4-,
∴t1=4-;
②菱形AEOM2
∵此時(shí)DM2=DE=1,
∴M2F=DF+DM2=6,
∴t2=6;
③菱形AEM3Q3
∵此時(shí)EM3=AE=,
∴DM3=EM3-DE=-1,
∴M3F=DM3+DF=(-1)+5=4+
∴t3=4+;
④菱形AM4EQ4
此時(shí)AE為菱形的對(duì)角線,設(shè)對(duì)角線AE與M4Q4交于點(diǎn)H,則AE⊥M4Q4
∵易知△AED∽△M4EH,
,即,得M4E=,
∴DM4=M4E-DE=-1=
∴M4F=DM4+DF=+5=
∴t4=
綜上所述,存在點(diǎn)M、點(diǎn)Q,使得以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形;時(shí)間t的值為:t1=4-,t2=6,t3=4+,t4=
點(diǎn)評(píng):本題是二次函數(shù)綜合題,考查的知識(shí)點(diǎn)包括二次函數(shù)的圖象與性質(zhì)、一次函數(shù)、待定系數(shù)法、圖形面積、菱形的判定與性質(zhì)等,由于涉及考點(diǎn)眾多,所以難度較大.第(2)問是存在型問題,要點(diǎn)在于利用面積的相等關(guān)系求出點(diǎn)P的縱坐標(biāo),然后運(yùn)用方程思想求得其橫坐標(biāo);第(3)問是運(yùn)動(dòng)型問題,注意符合條件的菱形有四個(gè),避免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱軸x=-2與x軸交于點(diǎn)C,直線y=-精英家教網(wǎng)2x+1經(jīng)過拋物線上一點(diǎn)B(2,m),且與y軸.直線x=-2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)①判斷△CBE的形狀,并說明理由;②判斷CD與BE的位置關(guān)系;
(3)若P(x,y)是該拋物線上的一個(gè)動(dòng)點(diǎn),是否存在這樣的點(diǎn)P,使得PB=PE?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽(yáng))如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1經(jīng)過拋物線上一點(diǎn)B(-2,m),且與y軸、直線x=2分別交于點(diǎn)D、E,
(1)求m的值及該拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A,且頂點(diǎn)M坐標(biāo)為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個(gè)單位,所得拋物線與x軸交于C、D兩點(diǎn),與原拋物線交于點(diǎn)P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當(dāng)m=2時(shí),點(diǎn)Q為平移后的拋物線的一動(dòng)點(diǎn),是否存在這樣的⊙Q,使得⊙Q與兩坐標(biāo)軸都相切?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上的另一點(diǎn)E,頂點(diǎn)為M(2,4),矩形ABCD的頂點(diǎn)A與O重合,AD,AB分別在x,y軸上,且AD=2,AB=3.
(1)求該拋物線對(duì)應(yīng)的函數(shù)解析式;
(2)現(xiàn)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從左圖所示位置沿x軸的正方向勻速平行移動(dòng);同時(shí)AB上一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速運(yùn)動(dòng),設(shè)它們的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤3),直線AB與拋物線的交點(diǎn)為N,設(shè)多邊形PNCD的面積為S,試探究S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案