【題目】已知:在中,,點(diǎn)D、E分別在邊AC、AB上,連接BD、CE交于點(diǎn),且.
(1)求證:.
(2)求證:.
【答案】(1)見解析;(2)見解析.
【解析】
(1)由等腰三角形的性質(zhì)可得,即可得出∠BFC=∠DCB,由∠FBC是公共角即可證明△BCF∽△BDC;(2)由(1)得△BCF∽△BDC,根據(jù)相似三角形的性質(zhì)可得,由∠BFC=∠EBC,∠BCF=∠ECB可證明△CFB∽△CBE,即可得△CBE∽△DCB,根據(jù)相似三角形的性質(zhì)可得,進(jìn)而可得結(jié)論.
(1)∵AB=AC,
∴,
∵,
∴∠BFC=∠DCB,
∵,
∴△BCF∽△BDC.
(2)∵△BCF∽△BDC,
∴,即,
∵∠BFC=∠EBC,∠BCF=∠ECB,
∴△CFB∽△CBE,
∴△CBE∽△DCB,
∴,即,
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子中裝有4張卡片.4張卡片的正面分別標(biāo)有數(shù)字1,2,3,4,這些卡片除數(shù)字外都相同,將卡片攪勻.
(1)從盒子任意抽取一張卡片,恰好抽到標(biāo)有奇數(shù)卡片的概率是: ;
(2)先從盒子中任意抽取一張卡片,再從余下的3張卡片中任意抽取一張卡片,求抽取的2張卡片標(biāo)有數(shù)字之和大于4的概率(請用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于二次函數(shù)的說法錯誤的是( 。
A.拋物線y=﹣2x2+3x+1的對稱軸是直線
B.函數(shù)y=2x2+4x﹣3的圖象的最低點(diǎn)在(﹣1,﹣5)
C.二次函數(shù)y=(x+2)2+2的頂點(diǎn)坐標(biāo)是(﹣2,2)
D.點(diǎn)A(3,0)不在拋物線y=x2﹣2x﹣3上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時,AD的長為 ;
②當(dāng)AC=3,BC=4時,AD的長為 ;
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張準(zhǔn)備給長方形客廳鋪設(shè)瓷磚,已知客廳長AB=8m,寬BC=6m,現(xiàn)將其劃分成一個長方形EFGH區(qū)域I和環(huán)形區(qū)域Ⅱ,區(qū)域Ⅰ用甲、乙瓷磚鋪設(shè),其中甲瓷磚鋪設(shè)成的是兩個全等的菱形圖案,區(qū)域Ⅱ用丙瓷磚鋪設(shè),如圖所示,已知N是GH中點(diǎn),點(diǎn)M在邊HE上,HN=3HM,設(shè)HM=x(m).
(1)用含x的代數(shù)式表示以下數(shù)量.鋪設(shè)甲瓷磚的面積為 m2,鋪設(shè)丙瓷磚的面積為 m2.
(2)若甲、乙、丙瓷磚單價分別為300元/m2,200元/m2,100元/m2,且EF≥FG+2,鋪設(shè)好整個客廳,三種瓷磚總價至少需要多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( 。
A. 21.7米 B. 22.4米 C. 27.4米 D. 28.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O外接于△ABC,過A點(diǎn)的切線AP與BC的延長線交于點(diǎn)P,∠APB的平分線分別交AB,AC于點(diǎn)D,E,其中AE,BD(AE<BD)的長是一元二次方程x2﹣5x+6=0的兩個實(shí)數(shù)根.
(1)求證:PABD=PBAE;
(2)在線段BC上是否存在一點(diǎn)M,使得四邊形ADME是菱形?若存在,請給予證明,并求其面積;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為10,點(diǎn)M是邊AB上一動點(diǎn),將等邊△ABC沿過點(diǎn)M的直線折疊,該直線與直線AC交于點(diǎn)N,使點(diǎn)A落在直線BC上的點(diǎn)D處,且BD:DC=1:4,折痕為MN,則AN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”
用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點(diǎn),南門位于的中點(diǎn),出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點(diǎn)在直線上)?請你計算的長為__________步.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com