【題目】已知:△ABC,A、B、C之和為多少?為什么?

A+B+C=180°

理由:作∠ACD=A,并延長(zhǎng)BCE

∵∠ACD=   (已作)

ABCD(   

∴∠B=      

而∠ACB+ACD+DCE=180°

∴∠ACB+   +   =180°(   

【答案】見解析.

【解析】

依據(jù)∠ACD=∠A即可得到AB∥CD,進(jìn)而得出∠B=∠DCE,再根據(jù)平角為180°,即可得到∠ACB+∠A+∠B=180°.

作∠ACD=A,并延長(zhǎng)BCE

∵∠ACD= A (已作)

ABCD( 內(nèi)錯(cuò)角相等,兩直線平行 

∴∠B= DCE  兩直線平行,同位角相等 

而∠ACB+ACD+DCE=180°

∴∠ACB+ A + B =180°( 等量代換 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線相交于點(diǎn)O,點(diǎn)M,N分別是邊BC,CD上的動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),AM,AN分別交BD于點(diǎn)E,F(xiàn),且∠MAN始終保持45°不變.

(1)求證: = ;
(2)求證:AF⊥FM;
(3)請(qǐng)?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當(dāng)∠BAM等于多少度時(shí),∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解分式方程:

(1) (2)

【答案】(1) ;(2)x=

【解析】試題分析:(1)兩邊乘以(x-1)(2x+1)去分母,轉(zhuǎn)化為整式方程,然后解整式方程,檢驗(yàn)后寫出分式方程的解即可

(2)兩邊乘以(x+2)(x-2)去分母,轉(zhuǎn)化為整式方程,然后解整式方程,檢驗(yàn)后寫出分式方程的解即可

試題解析:

解:(1)兩邊乘以(x-1)(2x+1)去分母得:2x+1=5(x-1),

解得:x=2,

當(dāng)x=2時(shí),(x-1)(2x+1)≠0,

∴原分式方程的解為x=2;

(2)兩邊乘以(x+2)(x-2)去分母得:(x-2)2-3=(x+2)(x-2),

解得:x

當(dāng)x時(shí),(x2)(x2)≠0,

所以原分式方程的解為x

型】解答
結(jié)束】
21

【題目】先化簡(jiǎn),再求值,其中的值從不等式組的整數(shù)解中選取.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D為AB上一點(diǎn),E為BC上一點(diǎn),且AC=CD=BD=BE,∠A=50°,則∠CDE的度數(shù)為( 。
A.50°
B.51°
C.51.5°
D.52.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AMBN,A=80°,點(diǎn)P是射線AM上動(dòng)點(diǎn)(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AMC、D.

(1)求∠CBD的度數(shù);

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),那么∠APB:ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=ABD時(shí),求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、C在反比例函數(shù)y= 的圖象上,點(diǎn)B,D在反比例函數(shù)y= 的圖象上,a>b>0,AB∥CD∥x軸,AB,CD在x軸的兩側(cè),AB= ,CD= ,AB與CD間的距離為6,則a﹣b的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C

(1)求點(diǎn)A,B,C的坐標(biāo);
(2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對(duì)稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積;
(3)此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,Pl上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對(duì)于下列各值:

線段MN的長(zhǎng);

②△PAB的周長(zhǎng);

③△PMN的面積;

直線MN,AB之間的距離;

⑤∠APB的大小.

其中會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊥EF于點(diǎn)G,CD⊥EF于點(diǎn)H,GP平分∠EGB,HQ平分∠CHF,圖中有哪些平行線?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案