【題目】如圖,已知的外接圓,,是劣弧上的點(不與點、重合),延長

求證:的延長線平分;

,邊上的高為,求的面積.

【答案】(1)見解析;(2)的外接圓的面積為

【解析】

(1)要證明AD的延長線平分∠CDE,即證明∠EDF=∠CDF,轉(zhuǎn)化為證明∠ADB=∠CDF,再根據(jù)A,B,C,D四點共圓的性質(zhì),和等腰三角形角之間的關(guān)系即可得到.
(2)求△ABC外接圓的面積.只需解出圓半徑,故作等腰三角形底邊上的垂直平分線即過圓心,再連接OC,根據(jù)角之間的關(guān)系在三角形內(nèi)即可求得圓半徑,可得到外接圓面積.

證明:如圖,設延長線上一點,

,,,四點共圓,

,

,

,

,

的延長線平分

為外接圓圓心,連接比延長交,交于點,連接,

,

,

設圓半徑為

,

邊上的高為

,

解得:

的外接圓的面積為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】銅陵市義安區(qū)實施了城鄉(xiāng)居民基本醫(yī)療保險(簡稱醫(yī)療保險),辦法規(guī)定農(nóng)村村民只要每人每年交納180元錢就可以加入醫(yī)療保險,住院時自己先墊付,出院同時就可得到按一定比例的報銷款,這項舉措惠及民生,吳斌與同學隨機調(diào)查了他們鎮(zhèn)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計圖.

根據(jù)圖中信息,解答下列問題:

(1)本次調(diào)查了多少村民?被調(diào)查的村民中參加醫(yī)療保險,得到報銷款的有多少人?

(2)若該鎮(zhèn)有34000村民,請估算有多少人參加了醫(yī)療保險?要使兩年后參加醫(yī)療保險的人數(shù)增加到業(yè)務31460人,假設這兩年的年增長率相同,求年增長率?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的平分線相交于點,過點 ,交,過點,下列四個結(jié)論:

; ;

③點各邊的距離相等;

④設,,則.

其中正確的結(jié)論有(

A.①②④B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,C=90°,AC=4,BC=3,O是ABC的內(nèi)心,以O為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是( )

A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分線交于O點,過點OBC的平行線交ABM點,交ACN點,則△AMN的周長為( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個實數(shù)根,且其中一個根為另一個根的三倍,則稱這樣的方程為“3倍根方程,以下說法不正確的是( 。

A. 方程x2﹣4x+3=03倍根方程

B. 若關(guān)于x的方程(x﹣3)(mx+n)=03倍根方程,則m+n=0

C. m+n=0m0,則關(guān)于x的方程(x﹣3)(mx+n)=03倍根方程

D. 3m+n=0m0,則關(guān)于x的方程x2+(m﹣n)x﹣mn=03倍根方程

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我縣古田鎮(zhèn)某紀念品商店在銷售中發(fā)現(xiàn):成功從這里開始的紀念品平均每天可售出20件,每件盈利40元.為了擴大銷售量,增加盈利,盡快減少庫存,該商店在今年國慶黃金周期間,采取了適當?shù)慕祪r措施,改變營銷策略后發(fā)現(xiàn):如果每件降價4元,那么平均每天就可多售出8件.商店要想平均每天在銷售這種紀念品上盈利1200元,那么每件紀念品應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程kx2+2x﹣1=0有實數(shù)根,

(1)求k的取值范圍;

(2)當k=2時,請用配方法解此方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O半徑為1,AB是⊙O的直徑,C是⊙O上一點,連接AC,⊙O外的一點D在直線AB上,若AC=,OB=BD.

(1)求證:CD是⊙O的切線;

(2)求陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

同步練習冊答案