【題目】如圖,在平面直角坐標系xOy中,P是直線y=2上的一個動點,⊙P的半徑為1,直線OQ切⊙P于點Q,則線段OQ取最小值時,Q點的坐標為_____.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,AD、BC相交于點O,OA=OC,∠OBD=∠ODB.求證:AB=CD.
(2)如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若OD=,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=ax2+bx+c分別交 x軸于A(4,0)、B(1,0),交y軸于點C(0,﹣3),過點A的直線交拋物線與另一點D.
(1)求拋物線的解析式及點D的坐標;
(2)若點P為x軸上的一個動點,點Q在線段AC上,且Q點到x軸的距離為,連接PC、PQ,當△PCQ周長最小時,求出點P的坐標;
(3)如圖2,在(2)的結(jié)論下,連接PD,在平面內(nèi)是否存在△A1P1D1,使△A1P1D1≌△APD(點A1、P1、D1的對應點分別是A、P、D,A1P1平行于y軸,點P1在點A1上方),且△A1P1D1的兩個頂點恰好落在拋物線上?若存在,請求出點A1的橫坐標m;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+2(a≠0)與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,拋物線經(jīng)過點D(﹣2,﹣3)和點E(3,2),點P是第一象限拋物線上的一個動點.
(1)求直線DE和拋物線的表達式;
(2)在y軸上取點F(0,1),連接PF,PB,當四邊形OBPF的面積是7時,求點P的坐標;
(3)在(2)的條件下,當點P在拋物線對稱軸的右側(cè)時,直線DE上存在兩點M,N(點M在點N的上方),且MN=2,動點Q從點P出發(fā),沿P→M→N→A的路線運動到終點A,當點Q的運動路程最短時,請直接寫出此時點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A(1,a)和B兩點,與x軸交于點C.
(1)求反比例函數(shù)的解析式;
(2)若點P在x軸上,且△APC的面積為5,求點P的坐標;
(3)若點P在y軸上,是否存在點P,使△ABP是以AB為一直角邊的直角三角形?若存在,求出所有符合條件的P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,過點A作直線EF.
(1)如圖甲,AB為直徑,要使EF為⊙O的切線,還需添加的條件是(寫出兩種情況,不需要證明):① 或② ;
(2)如圖乙,AB是非直徑的弦,若∠CAF=∠B,求證:EF是⊙O的切線.
(3)如圖乙,若EF是⊙O的切線,CA平分∠BAF,求證:OC⊥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,以邊AB為直徑的⊙O經(jīng)過點C,E是⊙O上的一點,且∠BEC=45°.
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若BE=8cm,sin∠BCE= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地高速鐵路建設成功,一列動車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時出發(fā),設普通列車行駛的時間為x(小時),兩車之間的距離為y(千米),圖中的折線表示y與x之間的函數(shù)關系,下列說法:
①甲、乙兩地相距1800千米;
②點B的實際意義是兩車出發(fā)后4小時相遇;
③m=6,n=900;
④動車的速度是450千米/小時.
其中不正確的是( 。
A.①B.②C.③D.④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點F在DE的延長線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結(jié)論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com