已知等邊△ABC某一邊上的中線為a,則此三角形的邊長(zhǎng)是

[  ]

A.2a
B.a
C.a
D.a
答案:B
解析:

根據(jù)等腰三角形“三線合一”的性質(zhì),中線AD⊥BC,在Rt△ABD中,AB=.選B.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),△PBQ是直角三角形?
(2)設(shè)四邊形APQC的面積為y(cm2),求y與t的關(guān)系式;是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出相應(yīng)的t值;不存在,說(shuō)明理由;
(3)設(shè)PQ的長(zhǎng)為x(cm),試確定y與x之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),設(shè)四邊形APQC的面積為y(cm2
(1)求y與t的關(guān)系式;
(2)如果△PBQ是直角三角形,求:四邊形APQC的面積;
(3)是否存在某一時(shí)刻t,使四邊形APQC的面積是△ABC面積的三分之二?如果存在,求出相應(yīng)的t值;不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某班研究性學(xué)習(xí)小組在研究用一條直線等分幾何圖形的面積時(shí),發(fā)現(xiàn)如下事實(shí):
㈠如圖①,對(duì)于三角形ABC,取BC邊中點(diǎn)D,過(guò)A、D兩點(diǎn)畫(huà)一條直線即可.
理由:∵△ABD與△ADC等底等高,
∴S△ABD=S△ADC
㈡如圖②,對(duì)于平行四邊形ABCD,連接兩對(duì)角線AC、BD交于點(diǎn)O,過(guò)O點(diǎn)任作一直線MN即可.(不妨設(shè)與AD、BC分別交于點(diǎn)M、N)
理由:∵四邊形ABCD是平行四邊形,
∴AO=CO,AD∥BC.∴∠MAO=∠NCO.
∴易得S△AOM=S△CON
∴S四邊形ABNM=S四邊形CDMN
受上面的啟發(fā),請(qǐng)你研究一下下面的問(wèn)題:
某村王大爺家有一塊梯形形狀的稻田(如圖③所示),已知:上底AD=40米,下底BC=60米,高h(yuǎn)=30米,王大爺準(zhǔn)備把這塊梯形形狀的稻田平均分給兩個(gè)兒子(面積相等).
(1)分割方法有許多種,請(qǐng)你幫助王大爺設(shè)計(jì)兩種不同的分割方案,在圖③、圖④中分別畫(huà)出來(lái),并說(shuō)明理由;
(2)為了盡可能減少筑砌分割田坎的勞動(dòng)量(只考慮田坎長(zhǎng)度對(duì)工時(shí)的影響,不計(jì)其它因素),問(wèn):田坎應(yīng)砌在什么位置最短?請(qǐng)畫(huà)出圖形,并求出此時(shí)分割線的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、(1)如圖1所示,已知△ABC中,D為BC的中點(diǎn),請(qǐng)寫(xiě)出圖1中,面積相等的三角形:
S△ABD=S△ADC
,理由是
等底等高

(2)如圖2所示,已知:平行四邊形A′ABC,D為BC中點(diǎn),請(qǐng)你在圖中過(guò)D作一條線段將平行四邊形A′ABC的面積平分,平分平行四邊形A′ABC的方法很多,一般地過(guò)
平行四邊形對(duì)邊中點(diǎn)
畫(huà)直線總能將平行四邊形A′ABC的面積平分.
(3)如圖3所示,已知:梯形ABCA′中,AA′∥BC,D為BC中點(diǎn),請(qǐng)你在圖3中過(guò)D作一條線段將梯形的面積等分.
(4)如圖4所示,某承包人要在自己梯形ABCD(AD∥BC)區(qū)域內(nèi)種兩種等面積的作物,并在河岸AD與公路BC間挖一條水渠EF,EF左右兩側(cè)分別種植了玉米、小麥,為了提高效益,要求EF最短.
①請(qǐng)你畫(huà)出相應(yīng)的圖形.
②說(shuō)明方案設(shè)計(jì)的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案