【題目】小區(qū)為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余、可回收和其他三類,分別記為a,b,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分別記為A,B,C.
(1)若小明將一袋分好類的生活垃圾隨機(jī)投入一類垃圾箱,請(qǐng)畫樹狀圖或列表求垃圾投放正確的概率;
(2)為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該小區(qū)三類垃圾箱中總共100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下表(單位:噸):
試估計(jì)該小區(qū)居民“廚余垃圾”投放正確的概率約是多少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)CM+AM的值最小時(shí),求M的坐標(biāo);
(4)在線段BC下方的拋物線上有一動(dòng)點(diǎn)P,求△PBC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)圖象經(jīng)過(guò)(-2,4).
(1)如果點(diǎn)(a,1)和(-1,b)在函數(shù)圖象上,求a,b的值;
(2)過(guò)圖象上一點(diǎn)P作y軸的垂線,垂足為Q(0,-8),求△OPQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x﹣3)2=24
(2)x2+12x+27=0
(3)x2+6x=4
(4)2(x﹣3)2=3(x﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為24m的籬笆,現(xiàn)一面利用墻(墻的最大可用長(zhǎng)度a為10m)圍成中間隔有一道籬笆的長(zhǎng)方形花圃,設(shè)花圃的寬AB為xm,面積為Sm2.
(1)要圍成面積為45m2的花圃,AB的長(zhǎng)是多少米?
(2)求AB的長(zhǎng)是多少時(shí)花圃的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個(gè)點(diǎn).∠APC=∠CPB=60°.
(1)判斷△ABC的形狀: ;
(2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)點(diǎn)P位于的什么位置時(shí),四邊形APBC的面積最大?求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BC是半⊙O的直徑,點(diǎn)P是半圓弧的中點(diǎn),點(diǎn)A是弧BP的中點(diǎn),AD⊥BC于D,連結(jié)AB、PB、AC,BP分別與AD、AC相交于點(diǎn)E、F.
(1)求證:AE=BE;
(2)判斷BE與EF是否相等嗎,并說(shuō)明理由;
(3)小李通過(guò)操作發(fā)現(xiàn)CF=2AB,請(qǐng)問(wèn)小李的發(fā)現(xiàn)是否正確?若正確,請(qǐng)說(shuō)明理由;若不正確,請(qǐng)寫出CF與AB正確的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AD是⊙O的弦,BC是⊙O的切線,切點(diǎn)為B.
(1)求證:;
(2)若AB=5,AD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD,AB=6cm,AD=8cm,點(diǎn)O從點(diǎn)B出發(fā),以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)O點(diǎn)運(yùn)動(dòng)時(shí)間為t(單位:s)(0<t<4),以點(diǎn)O為圓心,OB為半徑作半圓⊙O交BC 于點(diǎn)M,過(guò)點(diǎn)A作⊙O的切線交BC于點(diǎn)N,切點(diǎn)為P.
(1)如圖2,當(dāng)點(diǎn)N與點(diǎn)C重合時(shí),求t;
(2)如圖3,連接AO,作OQAO交AN于點(diǎn)Q,連接QM,求證:QM是⊙O的切線;
(3)如圖4,連接CP,在點(diǎn)O整個(gè)運(yùn)動(dòng)過(guò)程中,求CP的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com