【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB邊上一動點,N是AC邊上的一動點,則MN+MC的最小值為_____.
【答案】2
【解析】分析: 作點C關于AB的對稱點C′,過點C作C′N⊥AC于N,交AB于點M,則C′N的長即為MN+MC的最小值;
詳解: 作點C關于AB的對稱點C′,過點C作C′N⊥AC于N,交AB于點M,則C′N的長即為MN+MC的最小值,連接CC′交AB于點H,則CC′⊥AB,C′H=HC′,
∵∠C′MH=∠AMN,∠A=30°,
∴∠C′=∠A=30°,
∵AC=4,
∴HC=AC,
∴CC′=4,
∴C′N=CC′cosC′=2.
故答案為2.
點睛:本題考查軸對稱最短問題,直角三角形30度角性質,銳角三角函數(shù)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交BD于點G,交AB于點F.
(1)判斷直線AC與⊙O的位置關系,并說明理由;
(2)當BD=6,AB=10時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)(x>0)的圖象經過AO的中點C,且與AB相交于點D,OB=4,AD=3.
(1)求反比例函數(shù)的解析式;
(2)求cos∠OAB的值;
(3)求經過C、D兩點的一次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家環(huán)保局統(tǒng)一規(guī)定:空氣質量分為5級,當空氣污染指數(shù)達為1級,質量為優(yōu);時為2 級,質量為良;時為3級,輕度污染;時為4級,中度污染;300以上時為5級,重度污染。某城市隨機抽取了2019年某些天的空氣質量檢測結果,并整理繪制成如下兩端不完整的統(tǒng)計圖。請根據圖中信息,解答下列各題。
(1)本次調查共抽取了________天的空氣質量檢測結果進行統(tǒng)計。
(2)補全條形統(tǒng)計圖。
(3)扇形統(tǒng)計圖中3級空氣質量所對應的圓心角為______度。
(4)如果空氣污染達到中度污染或者以上,將不適宜進行戶外活動,根據目前的統(tǒng)計,請你估計2019年該城市有多少天不適宜開展戶外活動。(2019年,共365天)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC的垂直平分線交AC于點E,交BC于點D,且AD=AB,連接BE交AD于點F,下列結論:( )
①∠EBC=∠C;②△EAF∽△EBA;③BF=3EF;④∠DEF=∠DAE,其中結論正確的個數(shù)有
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從家出發(fā)沿濱江路到外灘公園徒步鍛煉,到外灘公園后立即沿原路返回,小明離開家的路程s(單位:千米)與走步時間t(單位:小時)之間的函數(shù)關系如圖所示,其中從家到外灘公園的平均速度是4千米/時,根據圖形提供的信息,解答下列問題:
(1)求圖中的a值;
(2)若在距離小明家5千米處有一個地點C,小明從第一層經過點C到第二層經過點C,所用時間為1.75小時,求小明返回過程中,s與t的函數(shù)解析式,不必寫出自變量的取值范圍;
(3)在(2)的條件下,求小明從出發(fā)到回到家所用的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校準備在國慶節(jié)期間組織學生到泰山進行研學旅行,已知老師與學生一共25人參加此次研學旅行,購買門票共花費1700元,門票費用如表格所示,求參加研學旅行的老師和學生各有多少人?設老師有x人,學生有y人,則可列方程組為( )
景點 | 票價 | 開放時間 |
泰山門票 | 旺季:125元/人 淡季:100元/人 | 全天 |
說明:(1)旺季時間(2月~11月),淡季時間(12月-次年1月); (2)老年人(60歲~70歲)、學生、兒童(1.2米~1.4米)享受5折優(yōu)惠; (3)教師、省部級勞模、英模、道德模范享受8折優(yōu)惠; (4)現(xiàn)役軍人、傷殘軍人、70歲以上老年人、殘疾人,憑本人有效證件免費進山; (5)享受優(yōu)惠的游客請出示本人有效證件。 |
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的關系是___;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com