【題目】若一個函數(shù)的解析式等于另兩個函數(shù)解析式的和,則這個函數(shù)稱為另兩個函數(shù)的“生成函數(shù)”,F(xiàn)有關(guān)于x的兩個二次函數(shù)y1、y2,且y1=a(x-m)2+4(m>0),y1、y2的“生成函數(shù)”為:y=x2+4x+14;當(dāng)x=m時,y2=15;二次函數(shù)y2的圖象的頂點坐標(biāo)為(2,k)。

(1)求m的值;

(2)求二次函數(shù)y1、y2的解析式。

【答案】(1)m=1;(2) y1=4x2-8x+8,y2=-3x2+12x+6.

【解析】

(1)根據(jù)已知新定義和當(dāng)xm,y2= 15得出15= m2a(mm)2+4m + 10,求出即可;

(2)m的值代入函數(shù)y2,根據(jù)頂點的橫坐標(biāo)即可求出a,再把a的值代入求出即可.

解:(1)生成函數(shù)的概念,可知yy1y2.

y1a(xm)2+4,yx2+4x+14,

y2yy1x2+4x+14-a(xm)2-4.

∵當(dāng)xm時,y2=15,15=m2+4m+10,得m1=-5,m2=1

又∵m>0,

m=1.

(2)m=1得,y2x2+4x+14-a(x-1)2-4

=(1-a)x2+(4+2a)x+10-a.

∵二次函數(shù)y2的圖象的頂點坐標(biāo)為(2,k),

∴對稱軸x=-=2,解得a=4.

y1=4(x-1)2+4=4x2-8x+8,

y2=(1-4)x2+(4+2×4)x+10-4=-3x2+12x+6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩點的坐標(biāo)分別為(0,6),(0,3),點Px軸正半軸上一動點,過點AAP的垂線,過點BBP的垂線,兩垂線交于點Q,連接PQ,M為線段PQ的中點.

(1)求證:A、B、P、Q四點在以M為圓心的同一個圓上;

(2)當(dāng)⊙Mx軸相切時,求點Q的坐標(biāo);

(3)當(dāng)點P從點(2,0)運動到點(3,0)時,請直接寫出線段QM掃過圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.

(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.

(2)當(dāng)點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.

①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.

②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為6的等邊三角形,PAC邊上一動點,由AC運動(與A、C不重合),QCB延長線上一動點,與點P同時以相同的速度由BCB延長線方向運動(Q不與B重合),過PPE⊥ABE,連接PQABD.

(1)AE=1時,求AP的長;

(2)當(dāng)∠BQD=30°時,求AP的長;

(3)在運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在對邊不相等的四邊形中,若四邊形的兩條對角線互相垂直,那么順次連結(jié)四邊形各邊中點得到的四邊形是( )

A.梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:各類方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.

轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x﹣2)=0,解方程x=0x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.

(1)問題:方程x3+x2﹣2x=0的解是x1=0,x2=________,x3=________;

(2)拓展:用轉(zhuǎn)化思想求方程=x的解;

(3)應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與反比例函數(shù)的圖象交于,兩點,點的縱坐標(biāo)為,軸于點,連接

求反比例函數(shù)的解析式;

的面積;

若點是反比例函數(shù)圖象上的一點,且滿足的面積是的面積的倍,請直接寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O,若1=38°,則BDE的度數(shù)為( 。

A. 71° B. 76° C. 78° D. 80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某活動小組為了估計裝有個白球和若干個紅球(每個球除顏色外都相同)的袋中紅球接近多少個,在不將袋中球倒出來的情況下,分小組進行摸球試驗,兩人一組,共組進行摸球?qū)嶒灒渲幸晃粚W(xué)生摸球,另一位學(xué)生記錄所摸球的顏色,并將球放回袋中搖勻,每一組做次試驗,匯總起來后,摸到紅球次數(shù)為次.

估計從袋中任意摸出一個球,恰好是紅球的概率是多少?

請你估計袋中紅球接近多少個?

查看答案和解析>>

同步練習(xí)冊答案