【題目】如圖,點C,D在線段AB上,CD2=ACDB,且△PCD是等邊三角形.
(1)證明:△ACP∽△PDB;
(2)求∠APB的度數(shù).
【答案】(1)見解析;(2)∠APB=120°.
【解析】
(1)通過△PCD是等邊三角形,得出∠ACP=∠PDB,再通過CD2=ACDB得出,從而證明△ACP∽△PDB;
(2)由△ACP∽△PDB可得∠APC=∠PBD,進而得出∠APC+∠BPD=60,從而∠APB的度數(shù)可求.
(1)∵△PCD是等邊三角形,
∴∠PCD=∠PDC=60°,
∴∠ACP=∠PDB=120°,
∵CD2=ACDB,由PC=PD=CD可得:PCPD=ACDB,
即,
∴△ACP∽△PDB;
(2)∵△ACP∽△PDB,
∴∠APC=∠PBD.
∵∠PDB=120°,
∴∠DPB+∠DBP=60°,
∴∠APC+∠BPD=60°.
∴∠APB=∠CPD+∠APC+∠BPD=120°.
科目:初中數(shù)學 來源: 題型:
【題目】2019年5月,以“尋根國學,傳承文明”為主題的蘭州市第三屆“國學少年強一國學知識挑戰(zhàn)賽”總決賽拉開帷幕,小明晉級了總決賽.比賽過程分兩個環(huán)節(jié),參賽選手須在每個環(huán)節(jié)中各選擇一道題目.
第一環(huán)節(jié):寫字注音、成語故事、國學常識、成語接龍(分別用表示);
第二環(huán)節(jié):成語聽寫、詩詞對句、經典通讀(分別用表示)
(1)請用樹狀圖或列表的方法表示小明參加總決賽抽取題目的所有可能結果
(2)求小明參加總決賽抽取題目都是成語題目(成語故事、成語接龍、成語聽寫)的概率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列條件中不能判定這兩個三角形相似的是( )
A. ∠A=55°,∠D=35°
B. AC=9,BC=12,DF=6,EF=8
C. AC=3,BC=4,DF=6,DE=8
D. AB=10,AC=8,DE=15,EF=9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山西是我國釀酒最早的地區(qū)之一,山西釀酒業(yè)迄今為止已有余年的歷史.在漫長的歷史進程中,山西人民釀造出品種繁多、馳名中外的美酒佳釀,其中以汾酒、竹葉青酒最為有名.某煙酒超市賣有竹葉青酒,每瓶成本價是元,經調查發(fā)現(xiàn),當售價為元時,每天可以售出瓶,售價每降低元,可多售出瓶(售價不高于元)
(1)售價為多少時可以使每天的利潤最大?最大利潤是多少?
(2)要使每天的利潤不低于元,每瓶竹葉青酒的售價應該控制在什么范圍內?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由于各人的習慣不同,雙手交叉時左手大拇指或右手大拇指在上是一個隨機事件,曾老師對他任教的學生做了一個調查,統(tǒng)計結果如下表所示:
2011屆 | 2012屆 | 2013屆 | 2014屆 | 2015屆 | |
參與實驗的人數(shù) | 106 | 110 | 98 | 104 | 112 |
右手大拇指在上的人數(shù) | 54 | 57 | 49 | 51 | 56 |
頻率 | 0.509 | 0.518 | 0.500 | 0.490 | 0.500 |
根據表格中的數(shù)據,你認為在這個隨機事件中,右手大拇指在上的概率可以估計為( )
A. 0.6 B. 0.5 C. 0.45 D. 0.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有4個球,分別是紅球和白球,這些球除顏色外都相同,將球攪勻,先從中任意摸出一個球,恰好摸到紅球的概率為.
(1)求口袋中有幾個紅球?
(2)先從中任意摸出一個球,從余下的球中再摸出一個球,請用列表法或樹狀圖法求兩次摸到的球中一個是紅球和一個是白球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知,A(2,0),B(0,2),C(,0),點P(m,n)為直線AB上一動點,若∠OPC=30°,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤.通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤.為保證每天至少售出260斤,張阿姨決定降價銷售.
銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com