【題目】正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn)。小華按下列要求作圖:①在正方形網(wǎng)格的三條不同的實(shí)線上各取一個(gè)格點(diǎn),使其中任意兩點(diǎn)不在同一條實(shí)線上;②連結(jié)三個(gè)格點(diǎn),使之構(gòu)成直角三角形。小華在左邊的正方形網(wǎng)格中作出了Rt⊿ABC。請(qǐng)你按照同樣的要求,在右邊的兩個(gè)正方形網(wǎng)格中各畫出一個(gè)直角三角形,并使三個(gè)網(wǎng)格中的直角三角形互不全等。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”,請(qǐng)說理證明∠A+∠B=∠C+∠D
(簡單應(yīng)用)
(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度數(shù)(可直接使用問題(1)中的結(jié)論)
(問題探究)
(3)如圖3,直線BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,則∠P的度數(shù)為
(拓展延伸)
(4)在圖4中,若設(shè)∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為 (用x、y表示∠P)
(5)在圖5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P與∠A、∠C的關(guān)系,直接寫出結(jié)論 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三角形ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點(diǎn),DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,則△DEF的面積與△ABC的面積之比等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形紙片ABCD中,AB= +1,AD= .
(1)如圖②,將矩形紙片向上方翻折,使點(diǎn)D恰好落在AB邊上的D′處,壓平折痕交CD于點(diǎn)E,則折痕AE的長為 .
(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點(diǎn)F,則四邊形B′FED′的面積為 .
(3)如圖④,將圖②中的△AED′繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過頂點(diǎn)B,求弧D′D″的長 . (結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)B(a,0),點(diǎn)C(0,b)分別在x軸,y軸上,其中a,b是二元一次方程的解,且a為不等式的最大整數(shù)解.
(1)證明:OB=OC;
(2)如圖1,連接AB,過點(diǎn)A作AD⊥AB交y軸于點(diǎn)D,在射線AD上截取AE=AB,連接CE,取CE的中點(diǎn)F,連接AF并延長至點(diǎn)G,使FG=AF,連接CG,OA.當(dāng)點(diǎn)A在第一象限內(nèi)運(yùn)動(dòng)(AD不經(jīng)過點(diǎn)C)時(shí),證明:∠OAF的大小不變;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小云想用7天的時(shí)間背誦若干首詩詞,背誦計(jì)劃如下:
①將詩詞分成4組,第i組有首,i =1,2,3,4;
②對(duì)于第i組詩詞,第i天背誦第一遍,第()天背誦第二遍,第()天背誦第三遍,三遍后完成背誦,其它天無需背誦,1,2,3,4;
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 | |
第1組 | |||||||
第2組 | |||||||
第3組 | |||||||
第4組 |
③每天最多背誦14首,最少背誦4首.
解答下列問題:
(1)填入補(bǔ)全上表;
(2)若,,,則的所有可能取值為______;
(3)7天后,小云背誦的詩詞最多為______首.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)E,F分別在AB,CD上,AF⊥CE,垂足為點(diǎn)O,∠1=∠B,
∠A+∠2=90°.求證:AB∥CD.
證明:如圖,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,兩直線平行)
______________
∴∠AFC+∠2=90°(等式性質(zhì))
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行)
請(qǐng)你仔細(xì)觀察下列序號(hào)所代表的內(nèi)容:
①∴∠AOE=90°(垂直的定義)
②∴∠AFB=90°(等量代換)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定義)
⑤∴∠AOE=∠AFB(兩直線平行,同位角相等)
橫線處應(yīng)填寫的過程,順序正確的是( 。
A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為10厘米,點(diǎn)E在邊AB上,且AE=4厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過2秒后,△BPE與△CQP是否全等?請(qǐng)說明理由;
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,則當(dāng)t為何值時(shí),能夠使△BPE與△CQP全等;此時(shí)點(diǎn)Q的運(yùn)動(dòng)速度為多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com