【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過(guò)點(diǎn)C作⊙O的切線(xiàn)BC,E是BC的中點(diǎn),AB交⊙O于D點(diǎn).
(1)直接寫(xiě)出ED和EC的數(shù)量關(guān)系:;
(2)DE是⊙O的切線(xiàn)嗎?若是,給出證明;若不是,說(shuō)明理由;
(3)填空:當(dāng)BC=時(shí),四邊形AOED是平行四邊形,同時(shí)以點(diǎn)O、D、E、C為頂點(diǎn)的四邊形是

【答案】
(1)ED=EC
(2)解:DE是⊙O的切線(xiàn).理由如下:

連結(jié)OD,如圖,

∵BC為切線(xiàn),

∴OC⊥BC,

∴∠OCB=90°,即∠2+∠4=90°,

∵OC=OD,ED=EC,

∴∠1=∠2,∠3=∠4,

∴∠1+∠3=∠2+∠4=90°,即∠ODB=90°,

∴OD⊥DE,

∴DE是⊙O的切線(xiàn)


(3)2;正方形
【解析】解:(1.)連結(jié)CD,如圖,
∵AC是⊙O的直徑,
∴∠ADC=90°,
∵E是BC的中點(diǎn),
∴DE=CE=BE;
(3.)當(dāng)BC=2時(shí),
∵CA=CB=2,
∴△ACB為等腰直角三角形,
∴∠B=45°,
∴△BCD為等腰直角三角形,
∴DE⊥BC,DE= BC=1,
∵OA=DE=1,AO∥DE,
∴四邊形AOED是平行四邊形;
∵OD=OC=CE=DE=1,∠OCE=90°,
∴四邊形OCED為正方形.
所以答案是ED=EC;2,正方形.
【考點(diǎn)精析】掌握平行四邊形的判定與性質(zhì)是解答本題的根本,需要知道若一直線(xiàn)過(guò)平行四邊形兩對(duì)角線(xiàn)的交點(diǎn),則這條直線(xiàn)被一組對(duì)邊截下的線(xiàn)段以對(duì)角線(xiàn)的交點(diǎn)為中點(diǎn),并且這兩條直線(xiàn)二等分此平行四邊形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如右圖所示,直線(xiàn)y1=-2x+3和直線(xiàn)y2=mx-1分別交y軸于點(diǎn)A,B,兩直線(xiàn)交于點(diǎn)C(1,n).

(1)m,n的值;

(2)求ΔABC的面積;

(3)請(qǐng)根據(jù)圖象直接寫(xiě)出:當(dāng)y1<y2時(shí),自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在折線(xiàn)ABCDEFG中,已知∠1=∠2=∠3=∠4=∠5,延長(zhǎng)AB、GF交于點(diǎn)M.試探索∠AMG與∠3的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形硬紙片ABCD中,,,,沿著對(duì)角線(xiàn)BD將平行四邊形剪開(kāi)成兩個(gè)三角形,固定不動(dòng),將沿射線(xiàn)BD方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng)運(yùn)動(dòng)后記為連接

小明認(rèn)為在運(yùn)動(dòng)過(guò)程中,始終有,你同意嗎?請(qǐng)說(shuō)明理由.

保持上述條件不變,當(dāng)運(yùn)動(dòng)______秒時(shí),四邊形為菱形.

保持上述條件不變,當(dāng)運(yùn)動(dòng)______秒時(shí),四邊形為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,,,都是正三角形,邊長(zhǎng)分別為2,,,,且BO,,都在x軸上,點(diǎn)A,,,從左至右依次排列在x軸上方,若點(diǎn)BO中點(diǎn),點(diǎn)中點(diǎn),,且B,則點(diǎn)的坐標(biāo)是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點(diǎn)B、點(diǎn)C,與反比例函數(shù)y= 的圖象在第四象限的相交于點(diǎn)P,并且PA⊥y軸于點(diǎn)A,已知A (0,﹣6),且SCAP=18.
(1)求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)設(shè)Q是一次函數(shù)y=kx+3圖象上的一點(diǎn),且滿(mǎn)足△OCQ的面積是△BCO面積的2倍,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE中點(diǎn),連接DF、CF.
(1)如圖1,當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請(qǐng)直接寫(xiě)出此時(shí)線(xiàn)段DF、CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°時(shí),請(qǐng)你判斷此時(shí)(1)中的結(jié)論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°時(shí),若AD=1,AC= ,求此時(shí)線(xiàn)段CF的長(zhǎng)(直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=ax+by=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置正確的是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為直線(xiàn)AB上一點(diǎn),∠COE=90°,OF平分∠AOE.

(1)若∠COF=40°,求∠BOE的度數(shù).

(2)若∠COF=α(0°<α<90°),則∠BOE=______(用含α的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案