【題目】等邊ABC的邊BC在射線BD,動(dòng)點(diǎn)P在等邊ABCBC邊上(點(diǎn)PBC不重合),連接AP.

1)如圖1,當(dāng)點(diǎn)PBC的中點(diǎn)時(shí),過點(diǎn)PE,并延長PEN點(diǎn),使得.①若,試求出AP的長度;

②連接CN,求證.

2)如圖2,若點(diǎn)MABC的外角的角平分線上的一點(diǎn),且,求證:.

【答案】1)①AP;②證明見解析;(2)證明見解析.

【解析】

1)①根據(jù)點(diǎn)PBC的中點(diǎn),利用等腰三角形三線合一的性質(zhì)得APBC,再利用勾股定理即可求得答案;

②根據(jù)軸對(duì)稱的性質(zhì),證得∠NCE=PCE=,從而證得結(jié)論;

2)作∠CBF=60°,BFMC的延長線相交于點(diǎn)F,連接PF,證明△BFC是等邊三角形,證得△ABPFBP,PM=PF,∠PMC=PFC,根據(jù)三角形外角的性質(zhì)可得結(jié)論.

1)①在等邊ABC中,

∵點(diǎn)PBC的中點(diǎn),,

APBC,,

AP=;

②∵

∴點(diǎn)N與點(diǎn)P關(guān)于直線AC對(duì)稱,

∴∠NCE=PCE=

∴∠NCD=180NCEPCE=,

∴∠NCD=B=,

2)作∠CBF=60°,BFMC的延長線相交于點(diǎn)F,連接PF,如圖:

∵△ABC是等邊三角形,
∴∠ABC=ACB=60,
∴∠ACD=120
CM平分∠ACD,
∴∠DCM=BCF=60
∵∠CBF=60,
∴∠FBC=BCF=BFC=60,
∴△BFC是等邊三角形,

∵△ABC和△BFC都是等邊三角形,
AB=BC=BF,
在△ABP和△FBP中,,

∴△ABPFBP

AP=PF,∠BAP=BFP,
AP=PM
PM=PF,
∴∠PMC=PFC

∵∠MCD=PMC +CPM=60,
BFC=BFP+PFC=60,
∴∠CPM=BFP =BAP,
∵∠APC=ABC+BAP=APM+CPM
∴∠APM=60

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標(biāo)系中,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.

1)將向上平移個(gè)單位長度,再向左平移個(gè)單位長度,得到,請(qǐng)畫出(點(diǎn),,的對(duì)應(yīng)點(diǎn)分別為,,

2)請(qǐng)畫出與關(guān)于軸對(duì)稱的(點(diǎn),,的對(duì)應(yīng)點(diǎn)分別為,

3)請(qǐng)寫出,的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(15,0),點(diǎn)B的坐標(biāo)為(6,12),點(diǎn)C的坐標(biāo)為(0,6), 直線ABy軸于點(diǎn)D, 動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿著y軸正方向以每秒2個(gè)單位的速度運(yùn)動(dòng), 同時(shí),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)沿著射線AB以每秒a個(gè)單位的速度運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間為t秒,

1)求直線AB的解析式和CD的長.

2)當(dāng)△PQD與△BDC全等時(shí),a的值.

3)記點(diǎn)P關(guān)于直線BC的對(duì)稱點(diǎn)為,連結(jié)當(dāng)t=3,時(shí), 求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1)(5mn2﹣4m2n)(﹣2mn

2)(x+7)(x﹣6x﹣2)(x+1

3 ()2 016×161 008

【答案】1﹣10m2n3+8m3n2;(22x﹣40;(3)1

【解析】試題分析:1)原式利用單項(xiàng)式乘以多項(xiàng)式法則計(jì)算即可得到結(jié)果;

2)原式兩項(xiàng)利用多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號(hào)合并即可得到結(jié)果;

3)先根據(jù)冪的乘方的逆運(yùn)算,把()2 016化為()1008,再根據(jù)積的乘方的逆運(yùn)算計(jì)算即可.

試題解析:(1原式=5mn2)(﹣2mn+﹣4m2n)(﹣2mn=﹣10m2n3+8m3n2;

2原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40

3)原式=()1008×161 008=(×16)1 008=1.

型】解答
結(jié)束】
19

【題目】如圖,方格圖中每個(gè)小正方形的邊長為1,點(diǎn)A、B、C都是格點(diǎn).

1)畫出△ABC關(guān)于直線BM對(duì)稱的△A1B1C1

2)寫出AA1的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了樹立文明鄉(xiāng)風(fēng),推進(jìn)社會(huì)主義新農(nóng)村建設(shè),某村決定組建村民文體團(tuán)隊(duì),現(xiàn)圍繞你最喜歡的文體活動(dòng)項(xiàng)目(每人僅限一項(xiàng)),在全村范圍內(nèi)隨機(jī)抽取部分村民進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

(1)這次參與調(diào)查的村民人數(shù)為   人;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中劃龍舟所在扇形的圓心角的度數(shù);

(4)若在廣場舞、腰鼓、花鼓戲、劃龍舟這四個(gè)項(xiàng)目中任選兩項(xiàng)組隊(duì)參加端午節(jié)慶典活動(dòng),請(qǐng)用列表或畫樹狀圖的方法,求恰好選中花鼓戲、劃龍舟這兩個(gè)項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架云梯AB25分米,斜靠在一面墻上,梯子底端B離墻7分米.

1)這個(gè)梯子的頂端A距地面有多高?

2)如果梯子頂端下滑了4分米,那么梯子的底端在水平方向滑動(dòng)了多少分米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖E是正方形ABCDAB的中點(diǎn),連接CE,過點(diǎn)BBHCEFACG,ADH.下列說法 ;②點(diǎn)FGB的中點(diǎn); 其中正確的結(jié)論的序號(hào)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,、兩點(diǎn)分別在邊上.,,且四邊形是平行四邊形.

請(qǐng)判斷線段有何數(shù)量關(guān)系?并說明理由.

當(dāng)時(shí).請(qǐng)猜想四邊形是什么特殊的平行四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,以為斜邊均向形外作等腰直角三角形,其面積分別是,且,則的值為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案