【題目】如圖,斜坡BE,坡頂B到水平地面的距離AB3米,坡底AE18米,在B處,E處分別測(cè)得CD頂部點(diǎn)D的仰角為30°,60°,求CD的高度.(結(jié)果保留根號(hào))

【答案】CD的高度是

【解析】

BFCD于點(diǎn)F,設(shè)DFx米, 在Rt△DBF中利用三角函數(shù)用x表示出BF的長(zhǎng),在直角△DCE中表示出CE的長(zhǎng),然后根據(jù)BF-CE=AE即可解答

BFCD于點(diǎn)F,設(shè)DFx米,

在Rt△DBF中,tan∠DBF,

BF ,

在直角△DCE中,DCx+CF=3+x(米),

在直角△DCE中,tan∠DEC ,則EC米.

BFCEAE,即 xx+3)=18.

解得:x=9 + ,

CD=9 + +3=9 +(米).

答:CD的高度是米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC中,∠ACB=90°AC=BC=8,點(diǎn)A在半徑為5的⊙O上,點(diǎn)O在直線l上.

(1)如圖①,若⊙O經(jīng)過(guò)點(diǎn)C,交BC于點(diǎn)D,求CD的長(zhǎng).

(2)(1)的條件下,若BC邊交l于點(diǎn)E,OE=2,求BE的長(zhǎng).

(3)如圖②,若直線l還經(jīng)過(guò)點(diǎn)C,BC是⊙O 的切線,F為切點(diǎn),則CF的長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明購(gòu)買(mǎi)A,B兩種商品,每次購(gòu)買(mǎi)同一種商品的單價(jià)相同,具體信息如下表:

次數(shù)

購(gòu)買(mǎi)數(shù)量(件

購(gòu)買(mǎi)總費(fèi)用(元

A

B

第一次

2

1

55

第二次

1

3

65

根據(jù)以上信息解答下列問(wèn)題:

(1)求A,B兩種商品的單價(jià);

(2)若第三次購(gòu)買(mǎi)這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示.現(xiàn)有下列結(jié)論:①;②;③;④當(dāng)時(shí),的增大而減。虎;⑥.其中正確的結(jié)論有(

A. l個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖,拋物線軸交于、兩點(diǎn),與軸交于點(diǎn).

1)求拋物線解析式:

2)拋物線對(duì)稱軸上存在一點(diǎn),連接、,當(dāng)值最大時(shí),求點(diǎn)H坐標(biāo):

3)若拋物線上存在一點(diǎn),,當(dāng)時(shí),求點(diǎn)坐標(biāo):

4)若點(diǎn)M平分線上的一點(diǎn),點(diǎn)是平面內(nèi)一點(diǎn),若以、、、為頂點(diǎn)的四邊形是矩形,請(qǐng)直接寫(xiě)出點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,點(diǎn)PQ分別在BC、CD上,∠PAQ=∠B

1)如圖1,若APBC,求證:APAQ;

2)如圖2,若點(diǎn)PBC上一點(diǎn),APAQ仍成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小敏學(xué)習(xí)之余設(shè)計(jì)了一個(gè)求函數(shù)表達(dá)式的程序,具體如圖所示,則當(dāng)輸入下列點(diǎn)的坐標(biāo)時(shí),請(qǐng)按程序指令解答.

1P110),P2(﹣3,0).

2P12,﹣1),P24,﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為測(cè)量學(xué)校旗桿AB的高度,小明從旗桿正前方6米處的點(diǎn)C出發(fā),沿坡度為i1的斜坡CD前進(jìn)2米到達(dá)點(diǎn)D,在點(diǎn)D處放置測(cè)角儀DE,測(cè)得旗桿頂部A的仰角為30°,量得測(cè)角儀DE的高為1.5米.A、B、C、DE在同一平面內(nèi),且旗桿和測(cè)角儀都與地面垂直.

(1)求點(diǎn)D的鉛垂高度(結(jié)果保留根號(hào))

(2)求旗桿AB的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角ABC中,延長(zhǎng)BC到點(diǎn)D,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MNBC,MN分別交∠ACB、∠ACD的平分線于E,F兩點(diǎn),連接AE、AF,在下列結(jié)論中:①OEOF;②CECF;③若CE12,CF5,則OC的長(zhǎng)為6;④當(dāng)AOCO時(shí),四邊形AECF是矩形.其中正確的是( 。

A. ①④B. ①②C. ①②③D. ②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案