(2008•甘南州)已知直線l:y=-x+1,現(xiàn)有下列3個命題:其中,真命題為( )
①點P(2,-1)在直線l上
②若直線l與x軸,y軸分別交于A,B兩點,則AB=;
③若a<-1,且點M(-1,2),N(a,b)都在直線l上,則b>2.
A.①②
B.②③
C.①②③
D.①③
【答案】分析:要判斷一個點是否在直線上,只需把點的坐標代入解析式,看是否滿足直線解析式;
直線與x軸的交點,即令y=0;直線與y軸的交點,即令x=0.根據(jù)勾股定理,可以求得一個點到原點的距離;
根據(jù)一次函數(shù)的k值,可以判斷y隨x的變化規(guī)律.
解答:解:①中,點P的坐標滿足直線的解析式,故正確;
②中,直線與x軸的交點是(1,0),與y軸的交點是(0,1),則AB=,故正確;
③中,根據(jù)k<0,y隨x的增大而減小,能得到b>2,故正確.
故選C.
點評:本題考查了點與直線的關(guān)系:若點在直線上,則點的坐標滿足直線的解析式;
直線與坐標軸的交點、以及一個點到原點的距離計算;
一次函數(shù)值的變化規(guī)律:當k<0,y隨x的增大而減。划攌>0,y隨x的增大而增大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《命題與證明》(01)(解析版) 題型:選擇題

(2008•甘南州)已知直線l:y=-x+1,現(xiàn)有下列3個命題:其中,真命題為( )
①點P(2,-1)在直線l上
②若直線l與x軸,y軸分別交于A,B兩點,則AB=;
③若a<-1,且點M(-1,2),N(a,b)都在直線l上,則b>2.
A.①②
B.②③
C.①②③
D.①③

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(10)(解析版) 題型:解答題

(2008•甘南州)如圖,在直角坐標系中,點A的坐標為(-2,0),⊙P剛好與x軸相切于點A,⊙P交y的正半軸于點B,點C,且BC=4.
(1)求半徑PA的長;
(2)求證:四邊形CAPB為菱形;
(3)有一開口向下的拋物線過O,A兩點,當它的頂點不在直線AB的上方時,求函數(shù)表達式的二次項系數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《四邊形》(07)(解析版) 題型:解答題

(2008•甘南州)如圖,在直角坐標系中,點A的坐標為(-2,0),⊙P剛好與x軸相切于點A,⊙P交y的正半軸于點B,點C,且BC=4.
(1)求半徑PA的長;
(2)求證:四邊形CAPB為菱形;
(3)有一開口向下的拋物線過O,A兩點,當它的頂點不在直線AB的上方時,求函數(shù)表達式的二次項系數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•甘南州)如圖,在直角坐標系中,點A的坐標為(-2,0),⊙P剛好與x軸相切于點A,⊙P交y的正半軸于點B,點C,且BC=4.
(1)求半徑PA的長;
(2)求證:四邊形CAPB為菱形;
(3)有一開口向下的拋物線過O,A兩點,當它的頂點不在直線AB的上方時,求函數(shù)表達式的二次項系數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市懷柔區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•甘南州)已知:如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,-1)兩點.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.

查看答案和解析>>

同步練習冊答案