【題目】如圖,點A在雙曲線yx0)上,點B在雙曲線yx0)上,且ABx軸,BCy軸,點Cx軸上,則ABC的面積為_____

【答案】1.5

【解析】

AEx軸于E,BFx軸于F,延長BAy軸于點D,如圖,根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得S矩形AEOD1,S矩形BFOD4,于是得到S矩形AEFB3,然后根據(jù)矩形的性質(zhì)和三角形面積公式易得SABCSFAB1.5

解:作AEx軸于E,BFx軸于F,延長BAy軸于點D,如圖,

ABx軸,

S矩形AEOD1,S矩形BFOD4,

S矩形AEFB413

SFAB1.5,

SABCSFAB1.5

故答案為1.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB的直角邊OAx軸上,OA=2,AB=1,將RtAOB繞點O逆時針旋轉(zhuǎn)90°得到RtCOD,拋物線經(jīng)過B、D兩點.

1)求二次函數(shù)的解析式;

2)連接BD,點P是拋物線上一點,直線OP把△BOD的周長分成相等的兩部分,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時間(單位:)之間的關(guān)系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結(jié)論:足球距離地面的最大高度為;足球飛行路線的對稱軸是直線;足球被踢出時落地;足球被踢出時,距離地面的高度是.

其中正確結(jié)論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個鋼筋三角架三邊長分別為20cm,50cm,60cm,現(xiàn)要再做一個與其相似的鋼筋三角架,而只有長為30cm50cm的兩根鋼筋,要求以其中的一根為一邊,從另一根截下兩段(允許有余料)作為另兩邊,則不同的截法有( ).

A. 一種 B. 兩種 C. 三種 D. 四種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點Ax軸的正半軸上,頂點Cy軸的正半軸上,點B在雙曲線x0)上,點D在雙曲線x0)上,點D的坐標(biāo)是 3,3

1)求k的值;

2)求點A和點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家海洋局將中國釣魚島最高峰命名為高華峰,并對釣魚島進(jìn)行常態(tài)化立體巡航.如圖1,在一次巡航過程中,巡航飛機(jī)飛行高度為2001米,在點A測得高華峰頂F點的俯角為30°,保持方向不變前進(jìn)1200米到達(dá)B點后測得F點俯角為45°,如圖2.請據(jù)此計算釣魚島的最高海拔高度多少米.(結(jié)果保留整數(shù),參考數(shù)值:=1.732,=1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B在線段AC上,點DEAC同側(cè),∠A=∠C=90°,BD⊥BEAD=BC

(1)求證:AC=AD+CE;

(2)AD=3CE=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q;

(i)當(dāng)點PA,B兩點不重合時,求的值;

(ii)當(dāng)點PA點運動到AC的中點時,求線段DQ的中點所經(jīng)過的路徑(線段)長.(直接寫出結(jié)果,不必寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.

(1)求甲選擇A部電影的概率;

(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)

查看答案和解析>>

同步練習(xí)冊答案