【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點(diǎn)B,C分別落在B′,C′處,線段EC′與線段AF交于點(diǎn)G,連接DG,B′G.
求證:
(1)∠1=∠2;
(2)DG=B′G.

【答案】
(1)證明:∵在平行四邊形ABCD中,DC∥AB,

∴∠2=∠FEC,

由折疊得:∠1=∠FEC,

∴∠1=∠2


(2)證明:∵∠1=∠2,

∴EG=GF,

∵AB∥DC,

∴∠DEG=∠EGF,

由折疊得:EC′∥B′F,

∴∠B′FG=∠EGF,

∵DE=BF=B′F,

∴DE=B′F,

∴△DEG≌△B′FG(SAS),

∴DG=B′G.


【解析】(1)根據(jù)平行四邊形得出DC∥AB,推出∠2=∠FEC,由折疊得出∠1=∠FEC=∠2,即可得出答案;(2)求出EG=B′G,推出∠DEG=∠EGF,由折疊求出∠B′FG=∠EGF,求出DE=B′F,證△DEG≌△B′FG即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AD∥BC,AB⊥AD,點(diǎn)E,點(diǎn)F分別在射線AD,射線BC上.若點(diǎn)E與點(diǎn)B關(guān)于AC對(duì)稱,點(diǎn)E與點(diǎn)F關(guān)于BD對(duì)稱,AC與BD相交于點(diǎn)G,則(
A.1+tan∠ADB=
B.2BC=5CF
C.∠AEB+22°=∠DEF
D.4cos∠AGB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D( ,0),E(2 ,0),F(xiàn)( ,﹣ ).

(1)他們將△ABC繞C點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°得到△A1B1C1 . 請(qǐng)你寫出點(diǎn)A1 , B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)45°,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=2 x2+bx+c上,請(qǐng)你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45°,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線y=x2上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo),請(qǐng)你直接寫出點(diǎn)P的所有坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4.

1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?

2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明一家利用國慶八天駕車到某景點(diǎn)旅游,小汽車出發(fā)前油箱有油35L,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升,油箱中余油量Q(L)與行駛時(shí)間t(h)之間的關(guān)系如圖所示,根據(jù)圖像回答下列問題:

(1)小汽車行駛______h后加油,中途加油_______L

(2)求加油前油箱余油量Q與行駛時(shí)間t的函數(shù)關(guān)系式

(3)如果小汽車在行駛過程中耗油量速度不變,加油站距景點(diǎn)200km,車速80km/h,要到達(dá)目的地,油箱中的油是否夠用?請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】n邊形的對(duì)角線把n邊形分割成(n-2)個(gè)三角形,共有多少種不同的分割方案(n≥4)?

(探究)為了解決上面的數(shù)學(xué)問題,我們采取一般問題特殊化的策略,先從最簡(jiǎn)單情形入手,再逐次遞進(jìn)轉(zhuǎn)化,最后猜想得出結(jié)論.不妨假設(shè)n邊形的分割方案有Pn種.

探究一用四邊形的對(duì)角線把四邊形分割成2個(gè)三角形,共有多少種不同的分割方案?

如圖,圖,顯然,只有2種不同的分割方案.所以,P4=2.

探究二:用五邊形的對(duì)角線把五邊形分割成3個(gè)三角形,共有多少種不同的分割方案?

不妨把分割方案分成三類:

1類:如圖③,用A,EB連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.

2類:如圖④,用A,EC連接,把五邊形分割成3個(gè)三角形,有1種不同的分割方案,可視為種分割方案.

3圖⑤,用A,ED連接,先把五邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)四邊形,再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案,所以,此類共有P4種不同的分割方案.

所以,P5 =++=()

探究三:用六邊形的對(duì)角線把六邊形分割成4個(gè)三角形,共有多少種不同的分割方案?

不妨把分割方案分成四類:

1類:如圖⑥,用A,F(xiàn)B連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形,再把五邊形分割成3個(gè)三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種不同的分割方案.

2類:如圖⑦,用A,F(xiàn)C連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案

3類:如圖⑧,用A,F(xiàn)D連接,先把六邊形分割轉(zhuǎn)化成2個(gè)三角形和1個(gè)四邊形.再把四邊形分割成2個(gè)三角形,由探究一知,有P4種不同的分割方案.所以,此類共有P4種分割方案.

4類:如圖⑨,用A,F(xiàn)E連接,先把六邊形分割轉(zhuǎn)化成1個(gè)三角形和1個(gè)五邊形.再把五邊形分割成3個(gè)三角形,由探究二知,有P5種不同的分割方案.所以,此類共有P5種分割方案.

所以,P6 =()

探究四:用七邊形的對(duì)角線把七邊形分割成5個(gè)三角形,則P7P6的關(guān)系為:

P7 = ,共有_____種不同的分割方案.……

(結(jié)論)用n邊形的對(duì)角線把n邊形分割成(n-2)個(gè)三角形,共有多少種不同的分割方案(n≥4)?(直接寫出PnPn -1的關(guān)系式,不寫解答過程).

(應(yīng)用)用八邊形的對(duì)角線把八邊形分割成6個(gè)三角形,共有多少種不同的分割方案? (應(yīng)用上述結(jié)論,寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①,BP、CP分別平分△ABC的外角∠CBD、∠BCE,BQ、CQ分別平分∠PBC、∠PCB,BM、CN分別是∠PBD、∠PCE的角平分線.

(1)當(dāng)∠BAC=40°時(shí),∠BPC=   ,∠BQC=   ;

(2)當(dāng)BM∥CN時(shí),求∠BAC的度數(shù);

(3)如圖,當(dāng)∠BAC=120°時(shí),BM、CN所在直線交于點(diǎn)O,直接寫出∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張圓心角為45°的扇形紙板剪得一個(gè)邊長(zhǎng)為1的正方形,則扇形紙板的面積是cm2(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小敏同學(xué)想測(cè)量一棵大樹的高度.她站在B處仰望樹頂,測(cè)得仰角為30°,再往大樹的方向前進(jìn)4m,測(cè)得仰角為60°,已知小敏同學(xué)身高(AB)為1.6m,則這棵樹的高度為( )(結(jié)果精確到0.1m, ≈1.73).

A.3.5m
B.3.6m
C.4.3m
D.5.1m

查看答案和解析>>

同步練習(xí)冊(cè)答案