【題目】如圖,矩形ABCD中,AB,BC,連結(jié)對角線AC,點O為AC的中點,點E為線段BC上的一個動點,連結(jié)OE,將△AOE沿OE翻折得到△FOE,EF與AC交于點G,若△EOG的面積等于△ACE的面積的,則BE=_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月22日是世界地球日,為了增強學(xué)生環(huán)保意識,某中學(xué)八年級舉行了“環(huán)保知識競賽”活動,為了了解本次競賽情況,只抽取了部分學(xué)生的成績(滿分100分,得分均為正整數(shù))進行統(tǒng)計,請你根據(jù)下面還未完成的頻數(shù)分布表和頻數(shù)分布直方圖,解答下列問題:
分組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 10 | 0.20 |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | a | b |
(1)a= b= ;
(2)補全頻數(shù)分布直方圖;
(3)該校八年級有500名學(xué)生,估計八年級學(xué)生中競賽成績高于80分的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分6分)
(1)(3分)(-3)2-|-|+(3.14-x)0
(2)(4分)先化簡,再求值:[(2x-y)2+(2x-y)(2x+y)]÷(4x),其中x=2,y=-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,AB∥CD,AE交CD于點C,DE⊥AE,垂足為E,∠A=30°,求∠D的度數(shù).
(2)如圖,E,C在BF上,AB=DE,AC=DF,BE=CF,試說明:AC∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀下文,尋找規(guī)律:
已知 x≠1 時,(1-x)(1+x)=1-x,
(1-x)(1+x+x)=1-x,
(1-x)(1+x+x+x)=1-x.…
觀察上式,并猜想:
(1-x)(1+x+x+ x+x)= ____________. (1-x)(1+x+x+…+x)= ____________.
(2) 通過以上規(guī)律,請你進行下面的探素:
①(a-b)(a+b)= ____________.
②(a-b)(a+ab+b)= ____________.
③(a-b)(a+a+ab+b )= ____________.
(3) 根據(jù)你的猜想,計算:
1+2+2+…+2+2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用大小相等的小正方形按一定規(guī)律拼成的,則第10個圖形是_________個小正方形,第n 個圖形是___________個小正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:善于思考的小明在解方程組時,采用了一種“整體代換”的解法,解法如下:
解:將方程②8x+20y+2y=10,變形為 2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,則 y=﹣1;把 y=﹣1 代入①得,x=4,所以方程組的解為: 請你解決以下問題:
(1)試用小明的“整體代換”的方法解方程組
(2)已知 x、y、z,滿足試求 z 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,E,F分別是AB,DC上的點,且,連接DE,BF,AF.
(1)求證:四邊形DEBF是平行四邊形;
(2)若AF平分,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點.
Ⅰ試確定上述反比例函數(shù)和一次函數(shù)的表達式;
Ⅱ連OB,在x軸上取點C,使,并求的面積;
Ⅲ直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com