【題目】如圖,已知AB=AC,BEAC于點(diǎn)E,CFAB于點(diǎn)F,BECF交于點(diǎn)D,則下列結(jié)論中不正確的是( 。

A. B. C. 點(diǎn)D的平分線上D. 點(diǎn)DCF的中點(diǎn)

【答案】D

【解析】

根據(jù)全等三角形的判定對(duì)各個(gè)選項(xiàng)進(jìn)行分析,從而得到答案.做題時(shí),要結(jié)合已知條件與三角形全等的判定方法逐個(gè)驗(yàn)證.

解:A、∵AB=AC,BEACE,CFABF,∠A=A∴△ABE≌△ACFAAS),正確;

B∵△ABE≌△ACF,AB=ACBF=CE,∠B=C,∠DFB=DEC=90°∴△BDF≌△CDEASA),正確;

C、∵△ABE≌△ACF,AB=ACBF=CE,∠B=C,∠DFB=DEC=90°DF=DE故點(diǎn)D在∠BAC的平分線上,正確;

D、無(wú)法判定,錯(cuò)誤;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC向右平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,可以得到.

(1)畫(huà)出平移后的;

(2)寫(xiě)出三個(gè)頂點(diǎn)的坐標(biāo);

(3)已知點(diǎn)Px軸上,、、P為頂點(diǎn)的三角形面積為4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)推出A、B、C三種特價(jià)玩具,若購(gòu)買(mǎi)A2件、B1件、C3件,共需24元;若購(gòu)買(mǎi)A3件、B4件、C2件,共需36元.那么小明購(gòu)買(mǎi)A1件、B1件、C1件,共需付款( 。

A.11B.12C.13D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于A,B與y軸交于C,過(guò)C作x軸的平行線交拋物線于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線交x軸于E,點(diǎn)D的坐標(biāo)為(2,3)

(1)求拋物線的解析式;
(2)點(diǎn)P為第一象限直線DE右側(cè)拋物線上一點(diǎn),連接AP交y軸于點(diǎn)F,連接PD、DF,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PFD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)P向下平移3個(gè)單位得到點(diǎn)Q,連接AQ、EQ,若∠AQE=45°,求點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度數(shù);

(2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某棵樹(shù)的高度,小明用長(zhǎng)為2m的竹竿作測(cè)量工具,移動(dòng)竹竿,使竹竿頂端的影子與樹(shù)的頂端的影子恰好落在地面的同一點(diǎn).此時(shí)竹竿與這一點(diǎn)相距5m,與樹(shù)相距10m,則樹(shù)的高度為( )

A.5m
B.6m
C.7m
D.8m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上張老師將課本頁(yè)第題進(jìn)行了改編,圖形不變.請(qǐng)你完成下面問(wèn)題.

如圖,.求證:

如圖,.求證:

如圖,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,ACB=∠ECD=90°,DAB邊上一點(diǎn).

求證:(1)△ACE≌△BCD;(2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,∠1=2,CF平分∠DCE

1)試判斷直線AEBF有怎樣的位置關(guān)系,并說(shuō)明理由;

2)若∠1=80°,求∠3的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案